The evolution of white dwarfs is essentially a cooling process that depends
primarily on the energy stored in their degenerate cores and on the
transparency of their envelopes. In this paper we compute accurate cooling
sequences for carbon-oxygen white dwarfs with hydrogen dominated atmospheres
for the full range of masses of interest. For this purpose we use the most
accurate available physical inputs for both the equation of state and opacities
of the envelope and for the thermodynamic quantities of the degenerate core. We
also investigate the role of the latent heat in the computed cooling sequences.
We present separately cooling sequences in which the effects of phase
separation of the carbon-oxygen binary mixture upon crystallization have been
neglected, and the delay introduced in the cooling times when this mechanism is
properly taken into account, in order to compare our results with other
published cooling sequences which do not include a treatment of this
phenomenon. We find that the cooling ages of very cool white dwarfs with pure
hydrogen atmospheres have been systematically underestimated by roughly 1.5 Gyr
at log(L/Lo)=-4.5 for an otherwise typical 0.6 Mo white dwarf, when phase
separation is neglected. If phase separation of the binary mixture is included
then the cooling ages are further increased by roughly 10%. Cooling tracks and
cooling isochrones in several color-magnitude diagrams are presented as well.Comment: 8 Pages; ApJ, accepted for publicatio