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Synchronization of spatiotemporally chaotic extended systems is considered in the context of coupled
one-dimensional complex Ginzburg-Landau equations (CGLE). A regime of coupled spatiotemporal
intermittency (STI) is identified and described in terms of the space-time synchronized chaotic motion
of localized structures. A quantitative measure of synchronization as a function of coupling parameter
is given through distribution functions and information measures. The coupled STI regime is shown
to disappear into regular dynamics for situations of strong coupling when localized structures become
unstable, hence a description in terms of a single CGLE is not appropriate. [S0031-9007(97)03313-9]

PACS numbers: 05.45.+b, 47.20.Ky

Two issues of high current interest in the general fieldnuch studied in the context of coupled map models in
of nonlinear dynamics are the quantitative characterizatiowhich the coupling and emerging correlations are among
of different regimes of spatiotemporal complex dynamicsspatially coupled oscillators. Here we search for correla-
in extended systems [1] and the synchronization of chaotitions of two variables at the same space-time point.
oscillators [2]. The characterization of low-dimensional Our study has been carried out in the context of com-
chaos is now a mature subject with well establishecblex Ginzburg-Landau Equations (CGLE) which give a
techniques, including techniques of chaos control. In thiprototype example of chaotic behavior in extended sys-
context, the demonstration that the familiar phenometems [10,11]. Our results show that the coupling be-
non of synchronization of two regular oscillators [3] by atween two complex amplitudes, andA, (O, = |A;| and
weak coupling can also be displayed by chaotic oscillatorg), = |A,|), in a STI regime described below, establishes
is an important new idea. This conceptual developmengpatiotemporal correlations which preserve spatiotempo-
has opened a new avenue of research with interesting pracal chaos but lead to a synchronized behavior: Starting
tical implications. Chaos in extended systems is a muclrom the independent STI dynamics af and A,, cou-
less mature subject, and many investigations are still at thgling between them leads to a STI regime dominated by
level of classifying different types of behavior. Conceptsthe synchronized chaotic motion of localized structures in
and methods of statistical mechanics are commonly inspace and time foA; andA,. An additional effect ob-
voked in terms of “phase diagrams” and transitions amongerved in our model is that the coupled STI regime is de-
different “phases” of behavior [4—7]. Still, the possibility stroyed for coupling larger than a given threshold. At this
of a synchronized behavior of spatially extended systemghreshold, maximal mutual information and anticorrelation
in a spatiotemporal disordered phase is an appealing ide# |A,| and|A,| are approached.
that we address in this Letter. More specifically, we will  The CGLE is the amplitude equation for a Hopf bifurca-
consider an extended one-dimensional system in a chaotjpn for which the system starts to oscillate with frequency
regime known as spatiotemporal intermittency (STI) [5], o, in a spatially homogeneous mode. When, in addition,
and we will characterize a coupled STI regime. the Hopf bifurcation breaks the spatial translation symme-

By synchronization of two chaotic oscillato®; and  try it identifies a preferred wave numbgt. and traveling
0, itis meant in a strict sense that plotting the time seriesyaves appear. In one-dimensional systems the amplitudes
O1(t;) vs Ox(t;) one obtains a straight line of unit slope. A, andA, of the two counterpropagating traveling waves
For many practical applications, synchronization of chaotiGatisfy coupled CGLE of the form
oscillations calls for an expanded framework and the con-
cept of “generalized synchronization” has been introduced ~ 9:A12 = pAiz + (I + ia)diA;,

[8,9] asthe appearance oquuncnonal dependence between — (1 +iB) (AP + YA PAL. (D)
the two time series. In this context, we understand here

by synchronization the situation in whiah, (¢;) becomes Equation (1) is written here in the limit of negligible group
a given known function 0D,(z;). Transferring these con- velocity. In particular, this limit is of interest to describe
cepts to spatially extended systems, we search for correléhe coupled motion of the two complex components of
tions between the spaag)-time(z;) series of two variables a vector CGLE. In this context, (1) is used to describe
O:(x;,t;) and O1(x;, ;). The synchronization o®; and  vectorial transverse pattern formation in nonlinear optical
0, occurs when these two space-time series become funeystems,A;, stand for the two independent circularly
tionally dependent. This idea is different from the onepolarized components of a vectorial electric field amplitude
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[12,13], and the coupling parametgris taken to be a real that linearly stable solutions are eith@r = ,/w, Q> = 0

number. orQ, = /m, Q1 = 0. In addition to these ordered states
Homogeneous solutions of Eqg. (1) are of the form we also find a STI attractor for coupled CGLE and values
Aa(x, 1) = Q€' (2) ©of « andB which are in the STl region of a single CGLE.
. ) 2 Changes of such STI behavior with varyingare shown
with 0y, real andw,, = —B(Qi, + yQ31). Fory = Fig. 1 [15].

0, 0> = u, and the two amplitudes satisfy the indepen- £qr small coupling(y < 1) we observe thala;| and
dent CGLE whose phase diagram has been studied in mugh, | tollow nearly independent dynamics, with the flat gray
detail in terms of the parameters and 8 [7,14]. FOr yegions in the space-time plot being laminar regions sepa-

y = 0, solutions of type (2) and other plane waves of dif- 4te by localized structures that appear, travel, and an-
ferent periodicities are known to be linearly stable belowyihijate. In the laminar regions, configurations close to

the Benjamin-Feir (BF) lindl + a8 > 0). Above this 2y with ¢, = 9, occur. Disorder occurs via the con-
line, regimes of phase and defect chaos occur. HOweVefamination by localized structures. These structures have
for arange of parameters below the BF line there is an addl rather irregular behavior and, in a first approach, they
tional attractor, coexisting with the one of plane waves, incan e classified as holelike or pulselike [11]. In Fig. 1
which the system displays a form of spatiotemporal chaogese holelike and pulselike structures are associated with
known as STI. In this attractor the solution is intermittentp o~k and white localized structures respectively. jAs

in space and time. Space-time plots|af| or || inthe jncreases we observe two facts: First, bpth] and |4,

ST regime fory = 0 are qualitatively similar to the ones ¢ontinye to display STI dynamics, although in larger and

shown in Fig. 1 (top). The question we address here is how|qer space-time scales. Second, and more interesting,
the STI regimes ofl, andA, change when the coupling 5 that the dynamics df4,| and|A,| become increasingly

isintroduced. We first recall that for a weak coupling situ-qrrelated. This is easily recognized by focusing in the
ation (y < 1) the solution (2) withQ?, = u/(1 + ) is - : : -

i Y 2= K Y localized structures: A black traveling structure in the
linearly stable below the same BF linet+ a8 > 0[12],  gpace-time plot of4; | has its corresponding white travel-
whereas the solutions with; = 0orQ, = Oareunstable. jng strycture in the space-time plot jof,| and vice versa.
For large coupling;y > 1, the competition between the Tpjs results in laminar states occurring in the same region

two amplitudes is such that only one of them survives, sy space-time fotA; | and|A,|. The coupled STI dynami-
cal regime is dominated by localized structures in which

A '\"f,"\"-’;‘.,’3’,3‘,‘}-,,'.\)'7’*70 ! | "1‘3}!‘(5;‘5{) "’j,/‘,‘;‘"‘;‘ 3.",\9"? maxima of|A;| occur, always together with minima pf, |

@l L { “;l(,‘;,.\"Q’,,} '32“\\’.4\';1"(35}';"’;37-\“» v{,»{%g,p,& and vice versa (bounded pulse-hole). In the vicinity of the
LEARA S ) \,'\,‘;3}-5,\&2;" y;’}»"’“ "-f,"’ Q;f‘i}'\" y}'j?g,, Y localized structures, and emerging from them, there appear
A A y\\;;;z)‘, ¥ w/ ;; K/ § &é{ AN "\)ﬁéftz’f‘ traveling wave solutions of (1) but with a different wave

i LA Al ¢ \ A \ I, X ®. 4 L1 AN

‘<y‘{§f“§f ot S 90y i’{ ‘~t})¥(} pARis u}gi number for|A;| and|A,| so that|A;| # |A,|. Eventually
NN AR RVAN AN A ing beyond th inal coupling = 1), the STI dy-

ST YasS tS W Y, QUMY ¢ (going beyond the marginal coupling = 1), the V%

namics is destroyed and,| and|A,| display only laminar
regions, in which eithelA,| or |A;| vanish, separated by
domain walls.

In the optical interpretation of (1), the laminar regions
with [A;| = |A,| correspond to transverse domains of lin-
early polarized light, although with a random direction
of linear polarization. The localized structures are es-
sentially circularly polarized objects since one of the two
amplitudes dominates over the other. Around these struc-
tures the plane wave solutions with;| # |A,| have dif-
ferent frequencies, so that they correspond to depolarized
solutions of (1) [12]. Asy > 1, localized traveling struc-

<> tures disappear, and one is left with circularly polarized

s K. |
domains separated by polarization walls.
l l l I I It is usually argued that foy > 1 the dynamics of the

—
~
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Ill coupled CGLE (1) is well represented by a single CGLE
since only one of the two waves survives. This is cer-
FIG. 1. Space-time plot of the modulya,| (left) and |A,]  tainly not true in the STI domain of parameters considered
(right). From top to bottomy = 0.1, 0.5, 0.95, and 1.05. The here since single CGLE would give rise to STI dynam-

horizontal axis represents space and the vertical axis represe
time (2000 time units foy = 0.95, 100 fory = 1.05, and 200 %%’ whereas the coupled set (1) does notjor 1. In

in the other two plots). The grey levels change linearly fromgeneral, a description in terms of a single ,CGLE W_OUId
the minimum (black) to the maximum (white) of the modulus. NOt be reliable for parameter values at which the single
The parameters arg = 1, « = 0.2, and 8 = —2.0. amplitude dynamics produces amplitude values close to
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zero. We next show that the correlations observed fonot show any obvious form of synchronization. Therefore
increasingy in Fig. 1 are, in fact, a kind of spatiotem- we find a case of partial synchronization of the dynamical
poral synchronization, in the generalized sense defined imariables. A different type of partial synchronization of
[8,9]. To this end, a characterization of the synchroniz-chaotic oscillators has been described in [18].

ing process can be given by analyzing the joint distribu- A quantitative measure of the synchronizing process
tion of the two variables. This distribution and values ofcan be given in terms of information measures [19].
|A;| vs |A,| are plotted in Fig. 2. The cloud of points The entropyH(X) = — Y, p(x)In p(x), where p(x) is
correspond to the different space-time points of Fig. 1the probability thatX takes the valuer, measures the
For y < 1 we obtain a diffuse cloud of points indicat- randomness of a discrete random variafle For two

ing essentially independent dynamics. The concentratiorandom discrete variableés and Y, with a joint probabil-

of points aroundA; |*> = |4,]> = u/(1 + y) corresponds ity distribution p(x, y), the mutual informatior (X, Y) =

to the laminar regions, but excursions away from that so— >, p(x,y)In[ p(x)p(y)/p(x,y)] gives a measure of
lution are independent. As the coupling is increased witlthe statistical dependence between both variables; the
v < 1, the cloud of points approaches the curve given bynutual information being0 if and only if X and Y
|A;]?> + |As|> = w. This indicates synchronization of the are independent. Considering the discretized values of
dynamics of structures departing from the laminar regions|4,| and |A,| at space-time points as random variables
The relationship betwedrn || and|A,| can be thoughtofas X = |A;|, Y = |A,|, their mutual information is a mea-

a kind of antiphase dynamics [17]. The points with largersure of their synchronization. In Fig. 3 (left) we have
values of|A;| and smaller values dfi;| (and vice versa) plotted the mutual information and the entropy |df |
correspond to the localized traveling structures. Intermediand |A,] as a function ofy [20]. This graph shows
ate points among these, and those arduntl= |A,|, cor-  that the entropy oflA;| and |A,| remains constant for
respond to the regular solutions of a nonzero wave numbencreasing values ofy, so that increasingy does not
that surround the localized structures. The special caseduce the uncertainty associated with the single-point
of marginal coupling is discussed below, but as we endistributions ofA;,. This indicates here that synchro-
ter into the strong coupling situatiofy > 1) the cloud nization is not the result of reduced randomness due
of points concentrates in the regios |> = u, |A2] =0  to the increase of time and length scales observed in
and|A,|?> = u, |A;| = 0 corresponding to the stable non- Fig. 1. However, whery is larger, the mutual informa-
chaotic solutions. Intermediate points correspond to théion becomes larger, approaching its maximum possible
domain walls separating these ordered regions. It shouldalue[l = H(|A;|) = H(]A»])] asy — 1. An additional

be pointed out that we are considering just the modulus ofjuantitative measurement of synchronization is given
the complex fieldgl; . The coupled phase dynamics doesby the linear correlation coefficient = ((|A;]|Az]) —
(A1) (1A 1)) [var(A; |)var(]A; )] ~!/% with var(x) being the
variance ofx. This coefficient, plotted as a function ¢f

in Fig. 3 (right), is negative, indicating that whé,| in-
creases|A,| decreases and vice versa.

Our quantitative indicators of synchronizatidnandp,
approach their maximum absolute valuesyas> 1. We
also observe that the regime of coupled STI disappears for
v > 1. This can be explained by considering the stability
of the localized structures responsible for STI. We have
examined the stability of localized structures, isolating an
individual pulse-hole structure from a STI configuration
at y < 1 and letting it evolve in time. Fory <1 it
recreates STI while foy = 1 it is unstable, becoming
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FIG. 2. Asymptotic states for (from left to right, and from top 0.00.20.406081.0 0002040608 1.0
to bottom)y = 0.1, 0.5, 0.95, and 1.05. The joint probability y v

distribution p(|A,[, |A;|) is shown as a 3D surface. On top of
each surfacelA(x, t)| vs |A2(x, t)| are shown in the form of a FIG. 3. Left: Entropy of|A;| (O) and |A;| (A) and their
dotted plot obtained from the values [of;| and |A,| at space- mutual information/ (¢) as a function ofy. Right: Correlation
time points during a time interval of 50 units. coefficientp of |A;| vs |A,| as a function ofy.
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wider and evolving into laminar states. It has been arguedynamics cannot be described in terms of a single domi-
that the domain of parametefs, 8) in which STI exists nant amplitude.

for y = 0 is given by the stability of localized structures  Financial support from DGICYT Project PB94-1167
[21]. In the same way, we find here that coupled STI(Spain) and European Union QSTRUCT (FMRX-CT96-
disappears in the limit of stability = 1 of coupled pulse- 0077) are acknowledged. R.M. acknowledges support
hole structures. The change in behavioyat 1 can be from PEDECIBA and CONICYT (Uruguay).
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