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Synchronization of spatiotemporally chaotic extended systems is considered in the context of cou
one-dimensional complex Ginzburg-Landau equations (CGLE). A regime of coupled spatiotempo
intermittency (STI) is identified and described in terms of the space-time synchronized chaotic mot
of localized structures. A quantitative measure of synchronization as a function of coupling parame
is given through distribution functions and information measures. The coupled STI regime is sho
to disappear into regular dynamics for situations of strong coupling when localized structures beco
unstable, hence a description in terms of a single CGLE is not appropriate. [S0031-9007(97)03313
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Two issues of high current interest in the general fie
of nonlinear dynamics are the quantitative characterizati
of different regimes of spatiotemporal complex dynamic
in extended systems [1] and the synchronization of chao
oscillators [2]. The characterization of low-dimensiona
chaos is now a mature subject with well establishe
techniques, including techniques of chaos control. In th
context, the demonstration that the familiar phenom
non of synchronization of two regular oscillators [3] by
weak coupling can also be displayed by chaotic oscillato
is an important new idea. This conceptual developme
has opened a new avenue of research with interesting p
tical implications. Chaos in extended systems is a mu
less mature subject, and many investigations are still at
level of classifying different types of behavior. Concep
and methods of statistical mechanics are commonly
voked in terms of “phase diagrams” and transitions amo
different “phases” of behavior [4–7]. Still, the possibility
of a synchronized behavior of spatially extended syste
in a spatiotemporal disordered phase is an appealing i
that we address in this Letter. More specifically, we wi
consider an extended one-dimensional system in a cha
regime known as spatiotemporal intermittency (STI) [5
and we will characterize a coupled STI regime.

By synchronization of two chaotic oscillatorsO1 and
O2, it is meant in a strict sense that plotting the time seri
O1stid vs O2stid one obtains a straight line of unit slope
For many practical applications, synchronization of chao
oscillations calls for an expanded framework and the co
cept of “generalized synchronization” has been introduc
[8,9] as the appearance of a functional dependence betw
the two time series. In this context, we understand he
by synchronization the situation in whichO1stid becomes
a given known function ofO2stid. Transferring these con-
cepts to spatially extended systems, we search for corre
tions between the spacesxid-timestjd series of two variables
O1sxi , tjd andO2sxi , tjd. The synchronization ofO1 and
O2 occurs when these two space-time series become fu
tionally dependent. This idea is different from the on
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much studied in the context of coupled map models
which the coupling and emerging correlations are amo
spatially coupled oscillators. Here we search for corre
tions of two variables at the same space-time point.

Our study has been carried out in the context of co
plex Ginzburg-Landau Equations (CGLE) which give
prototype example of chaotic behavior in extended sy
tems [10,11]. Our results show that the coupling b
tween two complex amplitudesA1 andA2 (O1 ­ jA1j and
O2 ­ jA2j), in a STI regime described below, establish
spatiotemporal correlations which preserve spatiotem
ral chaos but lead to a synchronized behavior: Start
from the independent STI dynamics ofA1 and A2, cou-
pling between them leads to a STI regime dominated
the synchronized chaotic motion of localized structures
space and time forA1 and A2. An additional effect ob-
served in our model is that the coupled STI regime is d
stroyed for coupling larger than a given threshold. At th
threshold, maximal mutual information and anticorrelatio
of jA1j andjA2j are approached.

The CGLE is the amplitude equation for a Hopf bifurca
tion for which the system starts to oscillate with frequen
vc in a spatially homogeneous mode. When, in additio
the Hopf bifurcation breaks the spatial translation symm
try it identifies a preferred wave numberKc and traveling
waves appear. In one-dimensional systems the amplitu
A1 andA2 of the two counterpropagating traveling wave
satisfy coupled CGLE of the form

≠tA1,2 ­ mA1,2 1 s1 1 iad≠2
xA1,2

2 s1 1 ibd sjA1,2j
2 1 gjA2,1j

2dA1,2 . (1)

Equation (1) is written here in the limit of negligible grou
velocity. In particular, this limit is of interest to describ
the coupled motion of the two complex components
a vector CGLE. In this context, (1) is used to describ
vectorial transverse pattern formation in nonlinear optic
systems,A1,2 stand for the two independent circularl
polarized components of a vectorial electric field amplitu
© 1997 The American Physical Society 4379
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[12,13], and the coupling parameterg is taken to be a real
number.

Homogeneous solutions of Eq. (1) are of the form

A1,2sx, td ­ Q1,2eiv1,2t , (2)

with Q1,2 real andv1,2 ­ 2bsQ2
1,2 1 gQ2

2,1d. For g ­
0, Q2

1,2 ­ m, and the two amplitudes satisfy the indepen
dent CGLE whose phase diagram has been studied in m
detail in terms of the parametersa and b [7,14]. For
g ­ 0, solutions of type (2) and other plane waves of di
ferent periodicities are known to be linearly stable belo
the Benjamin-Feir (BF) lines1 1 ab . 0d. Above this
line, regimes of phase and defect chaos occur. Howev
for a range of parameters below the BF line there is an ad
tional attractor, coexisting with the one of plane waves,
which the system displays a form of spatiotemporal cha
known as STI. In this attractor the solution is intermitten
in space and time. Space-time plots ofjA1j or jA2j in the
STI regime forg ­ 0 are qualitatively similar to the ones
shown in Fig. 1 (top). The question we address here is ho
the STI regimes ofA1 andA2 change when the couplingg
is introduced. We first recall that for a weak coupling situ
ation sg , 1d the solution (2) withQ2

1,2 ­ mys1 1 gd is
linearly stable below the same BF line1 1 ab . 0 [12],
whereas the solutions withQ1 ­ 0 orQ2 ­ 0 are unstable.
For large coupling,g . 1, the competition between the
two amplitudes is such that only one of them survives,

FIG. 1. Space-time plot of the modulusjA1j (left) and jA2j
(right). From top to bottom,g ­ 0.1, 0.5, 0.95, and 1.05. The
horizontal axis represents space and the vertical axis repres
time (2000 time units forg ­ 0.95, 100 forg ­ 1.05, and 200
in the other two plots). The grey levels change linearly from
the minimum (black) to the maximum (white) of the modulus
The parameters arem ­ 1, a ­ 0.2, andb ­ 22.0.
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that linearly stable solutions are eitherQ1 ­
p

m, Q2 ­ 0
or Q2 ­

p
m, Q1 ­ 0. In addition to these ordered state

we also find a STI attractor for coupled CGLE and value
of a andb which are in the STI region of a single CGLE
Changes of such STI behavior with varyingg are shown
in Fig. 1 [15].

For small couplingsg ø 1d we observe thatjA1j and
jA2j follow nearly independent dynamics, with the flat gra
regions in the space-time plot being laminar regions sep
rated by localized structures that appear, travel, and
nihilate. In the laminar regions, configurations close
(2) with Q1 ­ Q2 occur. Disorder occurs via the con
tamination by localized structures. These structures ha
a rather irregular behavior and, in a first approach, th
can be classified as holelike or pulselike [11]. In Fig.
these holelike and pulselike structures are associated w
black and white localized structures, respectively. Asg

increases we observe two facts: First, bothjA1j and jA2j

continue to display STI dynamics, although in larger an
slower space-time scales. Second, and more interest
is that the dynamics ofjA1j andjA2j become increasingly
correlated. This is easily recognized by focusing in th
localized structures: A black traveling structure in th
space-time plot ofjA1j has its corresponding white travel
ing structure in the space-time plot ofjA2j and vice versa.
This results in laminar states occurring in the same regi
of space-time forjA1j andjA2j. The coupled STI dynami-
cal regime is dominated by localized structures in whic
maxima ofjA1j occur, always together with minima ofjA2j

and vice versa (bounded pulse-hole). In the vicinity of th
localized structures, and emerging from them, there app
traveling wave solutions of (1) but with a different wav
number forjA1j andjA2j so thatjA1j fi jA2j. Eventually
(going beyond the marginal couplingg ­ 1), the STI dy-
namics is destroyed andjA1j andjA2j display only laminar
regions, in which eitherjA1j or jA2j vanish, separated by
domain walls.

In the optical interpretation of (1), the laminar region
with jA1j ­ jA2j correspond to transverse domains of lin
early polarized light, although with a random directio
of linear polarization. The localized structures are e
sentially circularly polarized objects since one of the tw
amplitudes dominates over the other. Around these str
tures the plane wave solutions withjA1j fi jA2j have dif-
ferent frequencies, so that they correspond to depolariz
solutions of (1) [12]. Asg . 1, localized traveling struc-
tures disappear, and one is left with circularly polarize
domains separated by polarization walls.

It is usually argued that forg . 1 the dynamics of the
coupled CGLE (1) is well represented by a single CGL
since only one of the two waves survives. This is ce
tainly not true in the STI domain of parameters consider
here since single CGLE would give rise to STI dynam
ics, whereas the coupled set (1) does not forg . 1. In
general, a description in terms of a single CGLE wou
not be reliable for parameter values at which the sing
amplitude dynamics produces amplitude values close
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zero. We next show that the correlations observed
increasingg in Fig. 1 are, in fact, a kind of spatiotem-
poral synchronization, in the generalized sense defined
[8,9]. To this end, a characterization of the synchroni
ing process can be given by analyzing the joint distrib
tion of the two variables. This distribution and values o
jA1j vs jA2j are plotted in Fig. 2. The cloud of points
correspond to the different space-time points of Fig.
For g ø 1 we obtain a diffuse cloud of points indicat-
ing essentially independent dynamics. The concentrat
of points aroundjA1j

2 ­ jA2j
2 ­ mys1 1 gd corresponds

to the laminar regions, but excursions away from that s
lution are independent. As the coupling is increased w
g , 1, the cloud of points approaches the curve given
jA1j

2 1 jA2j
2 ­ m. This indicates synchronization of the

dynamics of structures departing from the laminar region
The relationship betweenjA1j andjA2j can be thought of as
a kind of antiphase dynamics [17]. The points with larg
values ofjA1j and smaller values ofjA2j (and vice versa)
correspond to the localized traveling structures. Interme
ate points among these, and those aroundjA1j ­ jA2j, cor-
respond to the regular solutions of a nonzero wave num
that surround the localized structures. The special ca
of marginal coupling is discussed below, but as we e
ter into the strong coupling situationsg . 1d the cloud
of points concentrates in the regionsjA1j

2 ­ m, jA2j ­ 0
andjA2j

2 ­ m, jA1j ­ 0 corresponding to the stable non
chaotic solutions. Intermediate points correspond to t
domain walls separating these ordered regions. It sho
be pointed out that we are considering just the modulus
the complex fieldsA1,2. The coupled phase dynamics doe

FIG. 2. Asymptotic states for (from left to right, and from top
to bottom)g ­ 0.1, 0.5, 0.95, and 1.05. The joint probability
distribution psjA2j, jA1jd is shown as a 3D surface. On top o
each surface,jA1sx, tdj vs jA2sx, tdj are shown in the form of a
dotted plot obtained from the values ofjA1j and jA2j at space-
time points during a time interval of 50 units.
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not show any obvious form of synchronization. Therefor
we find a case of partial synchronization of the dynamica
variables. A different type of partial synchronization of
chaotic oscillators has been described in [18].

A quantitative measure of the synchronizing proces
can be given in terms of information measures [19]
The entropyHsXd ­ 2

P
x psxd ln psxd, where psxd is

the probability thatX takes the valuex, measures the
randomness of a discrete random variableX. For two
random discrete variablesX andY , with a joint probabil-
ity distributionpsx, yd, the mutual informationIsX, Y d ­
2

P
x,y psx, yd lnfpsxdps ydypsx, ydg gives a measure of

the statistical dependence between both variables; t
mutual information being0 if and only if X and Y
are independent. Considering the discretized values
jA1j and jA2j at space-time points as random variable
X ­ jA1j, Y ­ jA2j, their mutual information is a mea-
sure of their synchronization. In Fig. 3 (left) we have
plotted the mutual information and the entropy ofjA1j

and jA2j as a function ofg [20]. This graph shows
that the entropy ofjA1j and jA2j remains constant for
increasing values ofg, so that increasingg does not
reduce the uncertainty associated with the single-poi
distributions of A1,2. This indicates here that synchro-
nization is not the result of reduced randomness du
to the increase of time and length scales observed
Fig. 1. However, wheng is larger, the mutual informa-
tion becomes larger, approaching its maximum possib
valuefI ­ HsjA1jd ­ HsjA2jdg asg ! 1. An additional
quantitative measurement of synchronization is give
by the linear correlation coefficientr ­ skjA1j jA2jl 2

kjA1jl kjA2jld fvarsjA1jdvarsjA2jdg21y2 with varsxd being the
variance ofx. This coefficient, plotted as a function ofg

in Fig. 3 (right), is negative, indicating that whenjA1j in-
creases,jA2j decreases and vice versa.

Our quantitative indicators of synchronization,I andr,
approach their maximum absolute values asg ! 1. We
also observe that the regime of coupled STI disappears f
g . 1. This can be explained by considering the stability
of the localized structures responsible for STI. We hav
examined the stability of localized structures, isolating a
individual pulse-hole structure from a STI configuration
at g , 1 and letting it evolve in time. Forg , 1 it
recreates STI while forg $ 1 it is unstable, becoming

FIG. 3. Left: Entropy ofjA1j shd and jA2j snd and their
mutual informationI s¶d as a function ofg. Right: Correlation
coefficientr of jA1j vs jA2j as a function ofg.
4381
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wider and evolving into laminar states. It has been argu
that the domain of parameterssa, bd in which STI exists
for g ­ 0 is given by the stability of localized structures
[21]. In the same way, we find here that coupled ST
disappears in the limit of stabilityg ­ 1 of coupled pulse-
hole structures. The change in behavior atg ­ 1 can be
alternatively understood from the emergence ofjA1j

2 1

jA2j
2 ­ m as an attracting manifold. Writing (1) in terms

of R2 ; jA1j
2 1 jA2j

2 and x ; arctansjA1jyjA2jd, one
can see immediately that homogeneous solutions forg ­
1 are R2 ­ m and x arbitrary. The transient dynamics
starting from random initial conditions atg ­ 1 consists
of a very fast evolution ofRsx, td towards

p
m, with no

regime of STI existing at any time, withxsx, td covering
almost completely the range of its possible values. In t
late dynamical stages,xsx, td reaches an arbitrary valuex0

through spatial diffusion. An explanation for this behavio
is that, while forg fi 1 the zero-wave-number component
R̂sk ­ 0d and x̂sk ­ 0d have a nonzero driving force, a
g ­ 1, x̂sk ­ 0d is a marginal variable whilêRsk ­ 0d is
strongly driven. OnceR becomes space homogeneous, t
homogeneous state is asymptotically approached beca
the different wave-number components ofA1,2 become
decoupled:

jÂ1,2sk, tdj2 ­ e
2sm2k2dt22

Rt

0
Rssd ds

jÂ1,2sk, t ­ 0dj2. (3)

Requiring bound solutions fort ! `, (3) implies that all
Fourier components ofA decay to zero, except the one
with the smallest wave number. Since a homogeneo
component is usually present in the initial condition, th
system will evolve into a homogeneous state, as obser
numerically. In some of our simulations the STI regim
has been observed to disappear for a coupling smaller t
g ­ 1, but this seems to be a consequence of finite-s
effects: The size of the laminar portions of Fig. 1 increas
with the couplingg. When this size becomes similar to
system size, one of the stable plane waves can occ
the whole system, thus preventing any further appeara
of defects and STI. For a given initial condition, with
parametersa ­ 0.2 and b ­ 21.4, and a system size
L ­ 512, the STI regime was seen to disappear atg ­
0.85. As soon as the system size was doubled the S
regime reappeared again. By reducing the system s
to L ­ 256 the STI regime disappeared for smallerg.
The conclusion from this and other numerical experimen
is that STI exists for allg , 1 in the same range of
parameters as it exists in the single CGLE, with time a
length scales diverging asg approaches 1, where ST
disappears.

In summary we have described a regime of synchr
nized STI dominated by the space-time synchronizati
of localized structures. Synchronization is measured
mutual information and a correlation parameter that ta
their absolute maximum value at the boundary betwe
weak and strong couplingg ­ 1. Beyond this boundary
sg . 1d, STI disappears, but the strong, coupled syste
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dynamics cannot be described in terms of a single dom
nant amplitude.
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