78,546 research outputs found

    Convective instabilities in two superposed horizontal liquid layers heated laterally

    Get PDF
    This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two and three dimensional perturbations reveals the existence of three kind of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propagation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitudinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wavenumbers. These results suggest to consider two liquid layers as an interesting prototype for the study of propagation and interaction of waves in the context of the B\'enard-Marangoni problem.Comment: 21 pages, 9 figures, 2 tables;accepted to be published in PR

    The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance

    Full text link
    We present a numerical investigation of the contribution of the presupernova ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts (GRBs), and describe how this external matter can affect the observable afterglow characteristics. An implicit hydrodynamic calculation for massive stellar evolution is used here to provide the inner boundary conditions for an explicit hydrodynamical code to model the circumstellar gas dynamics. The resulting properties of the circumstellar medium are then used to calculate the deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow light curve produced as the shock wave propagates through the shocked-wind medium. We find that variations in the stellar wind drive instabilities that may produce radial filaments in the shocked-wind region. These comet-like tails of clumps could give rise to strong temporal variations in the early afterglow lightcurve. Afterglows may be expected to differ widely among themselves, depending on the angular anisotropy of the jet and the properties of the stellar progenitor; a wide diversity of behaviors may be the rule, rather than the exception.Comment: 17 pages, 7 figures, ApJ in pres

    Collapse of the Gd3+Gd^{3+} ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor CeFe4P12CeFe_{4}P_{12}

    Get PDF
    Experiments on the Gd3+Gd^{3+} Electron Spin Resonance (ESR) in the filled skutterudite Ce1xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12} (x0.001x \approx 0.001), at temperatures where the host resistivity manifests a smooth insulator-metal crossover, provides evidence of the underlying Kondo physics associated with this system. At low temperatures (below TKT \approx K), Ce1xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12} behaves as a Kondo-insulator with a relatively large hybridization gap, and the Gd3+Gd^{3+} ESR spectra displays a fine structure with lorentzian line shape, typical of insulating media. The electronic gap is attributed to the large hybridization present in the coherent regime of a Kondo lattice, when Ce 4f-electrons cooperate with band properties at half-filling. Mean-field calculations suggest that the electron-phonon interaction is fundamental at explaining the strong 4f-electron hybridization in this filled skutterudite. The resulting electronic structure is strongly temperature dependent, and at about T160KT^{*} \approx 160 K the system undergoes an insulator-to-metal transition induced by the withdrawal of 4f-electrons from the Fermi volume, the system becoming metallic and non-magnetic. The Gd3+Gd^{3+} ESR fine structure coalesces into a single dysonian resonance, as in metals. Still, our simulations suggest that exchange-narrowing via the usual Korringa mechanism, alone, is not capable of describing the thermal behavior of the ESR spectra in the entire temperature region (4.24.2 - 300300 K). We propose that temperature activated fluctuating-valence of the Ce ions is the missing ingredient that, added to the usual exchange-narrowing mechanism, fully describes this unique temperature dependence of the Gd3+Gd^{3+} ESR fine structure observed in Ce1xGdxFe4P12Ce_{1-x}Gd_{x}Fe_{4}P_{12}.Comment: 19 pages, 6 figure

    Structural changes at the semiconductor-insulator phase transition in the single layered La0.5Sr1.5MnO4 perovskite

    Get PDF
    The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.Comment: 3 tables and 10 figures; accepted in Phys. Rev.

    A Morphological Diagnostic for Dynamical Evolution of Wolf-Rayet Bubbles

    Get PDF
    We have observed H-alpha and [OIII] emission from eight of the most well defined Wolf-Rayet ring nebulae in the Galaxy. We find that in many cases the outermost edge of the [OIII] emission leads the H-alpha emission. We suggest that these offsets, when present, are due to the shock from the Wolf-Rayet bubble expanding into the circumstellar envelope. Thus, the details of the WR bubble morphology at H-alpha and [OIII] can then be used to better understand the physical condition and evolutionary stage of the nebulae around Wolf-Rayet stars, as well as place constraints on the nature of the stellar progenitor and its mass loss history.Comment: 11 pages, LaTex, 8 figures, accepted for publication in AJ, November 200
    corecore