7 research outputs found

    Method to obtain platelet-rich plasma from rabbits (Oryctolagus cuniculus )

    Full text link
    Abstract: Platelet-rich plasma (PRP) is a product easy and inxpesnsive, and stands out to for its growth factors in tissue repair. To obtain PRP, centrifugation of whole blood is made with specific time and gravitational forces. Thus, the present work aimed to study a method of double centrifugation to obtain PRP in order to evaluate the effective increase of platelet concentration in the final product, the preparation of PRP gel, and to optimize preparation time of the final sample. Fifteen female White New Zealand rabbits underwent blood sampling for the preparation of PRP. Samples were separated in two sterile tubes containing sodium citrate. Tubes were submitted to the double centrifugation protocol, with lid closed and 1600 revolutions per minute (rpm) for 10 minutes, resulting in the separation of red blood cells, plasma with platelets and leucocytes. After were opened and plasma was pipetted and transferred into another sterile tube. Plasma was centrifuged again at 2000rpm for 10 minutes; as a result it was split into two parts: on the top, consisting of platelet-poor plasma (PPP) and at the bottom of the platelet button. Part of the PPP was discarded so that only 1ml remained in the tube along with the platelet button. This material was gently agitated to promote platelets resuspension and activated when added 0.3ml of calcium gluconate, resulting in PRP gel. Double centrifugation protocol was able to make platelet concentration 3 times higher in relation to the initial blood sample. The volume of calcium gluconate used for platelet activation was 0.3ml, and was sufficient to coagulate the sample. Coagulation time ranged from 8 to 20 minutes, with an average of 17.6 minutes. Therefore, time of blood centrifugation until to obtain PRP gel took only 40 minutes. It was concluded that PRP was successfully obtained by double centrifugation protocol, which is able to increase the platelet concentration in the sample compared with whole blood, allowing its use in surgical procedures. Furthermore, the preparation time is appropriate to obtain PRP in just 40 minutes, and calcium gluconate is able to promote the activation of platelets

    Further Constituents Of Galianthe Thalictroides (rubiaceae) And Inhibition Of Dna Topoisomerases I And Iiα By Its Cytotoxic β-carboline Alkaloids

    No full text
    A new cytotoxic β-carboline alkaloid, 1-methyl-3-(2-hydroxypropan-2- yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol (1), was isolated from roots of Galianthe thalictroides, together with the alkaloid 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl) -cyclopentanol (2), the anthraquinones 1-methyl-alizarin and morindaparvin-A, the coumarin scopoletin, homovanillic alcohol, (-)-epicatechin, and the steroids stigmast-4-en-3-one, 4,22-stigmastadien-3-one, campest-4-en-3-one, stigmast-4-en-3,6-dione, 6-β-hydroxy-stigmast-4-en-3-one, stigmasterol, campesterol, β-sitosterol, and β-sitosterol-3-O-β-d- glucopyranoside. Among the previously known compounds, homovanillic alcohol is a novel finding in Rubiaceae, while 1-methyl-alizarin, morindaparvin-A, scopoletin, stigmast-4-en-3-one, 4,22-stigmastadien-3-one, campest-4-en-3-one, stigmast-4-en-3,6-dione, and 6-β-hydroxy-stigmast-4-en-3-one is reported for the first time in the genus Galianthe. The cytotoxic β-carboline alkaloids 1 and 2 exhibited potent antitopoisomerase I and IIα activities and strong evidence is provided for their action as topoisomerase IIα poisons and redox-independent inhibitors. © 2014 Elsevier Ltd. All rights reserved.24513581361Cabral, E.L., (2009) Ann. Missouri Bot. Garden, 96, p. 27Figueiredo, P.O., Garcez, F.R., Matos, M.F.C., Perdomo, R.T., Queiroz, L.M.M., Pott, A., Garcez, A.J.S., Garcez, W.S., (2011) Planta Med., 77, p. 1852Ishida, J., Wang, H.K., Bastow, K.F., Hu, C.Q., Lee, K.H., (1999) Bioorg. Med. Chem. Lett., 9, p. 3319Sobhani, A.M., Ebrahimi, S.A., Mahmoudian, M., (2002) J. Pharm. Pharm. Sci., 5, p. 19Cao, R., Peng, W., Chen, H., Ma, Y., Liu, X., Hou, X., Guan, H., Xu, A., (2005) Biochem. Biophys. Res. Commun., 338, p. 1557Cao, R., Peng, W., Wang, Z., Xu, A., (2007) Curr. Med. Chem., 14, p. 479Meester, C., (1995) Mutat. Res., 339, p. 139Taira, Z., Kanzawas, S., Dohara, C., Ishida, S., Matsumoto, M., Sakiya, Y., (1997) J. Toxicol. Environ. Health, 43, p. 83Balon, M., Munoz, M.A., Carmona, C., Guardado, P., Galan, M., (1999) Biophysics, 80, p. 41Siu, F.M., Pommier, Y., (2013) Nucleic Acids Res., 41, p. 10010Oppegard, L.M., Nguyen, T., Ellis, K.C., Hiasa, H., (2012) J. Nat. Prod., 75, p. 1485Auzanneau, C., Montaudon, D., Jacquet, R., Puyo, S., Pouységu, L., Deffieux, D., Elkaoukabi-Chaibi, A., Pourquier, P., (2012) Mol. Pharmacol., 82, p. 134Nitiss, J.L., (2009) Nat. Rev. Cancer, 9, p. 327Wang, J.C., (2009) Untangling the Double Helix, , Cold Spring Harbor Laboratory Press New York Chapter 6Holm, C., Goto, T., Wang, J.C., Botstein, D., (1985) Cell, 41, p. 553Nitiss, J.L., (2009) Nat. Rev. Cancer, 9, p. 338Pommier, Y., Leo, E., Zhang, H., Marchand, C., (2010) Chem. Biol., 17, p. 421Wijnsma, R., Verpoorte, R., (1986) Progress in the Chemistry of Organic Natural Products, 49, pp. 79-149. , W. Herz, H. Grisebach, G.W. Kirby, Ch. Tamm, Springer Vienna Chapter 2Chang, P., Lee, K.H., Shingu, T., Hirayama, T., Hall, I.H., Huang, H.C., (1982) J. Nat. Prod., 45, p. 206Chang, P., Lee, K.H., (1984) Phytochemistry, 23, p. 1733Vasconcelos, J.M.J., Silva, A.M.S., Cavaleiro, J.A.S., (1998) Phytochemistry, 49, p. 1421Pouchert, C.J., Behnke, J., (1993) The Aldrich Library of 13C and 1H FT NMR Spectra, , Aldrich Chemical Company Milwaukee p 412Tanaka, J.C.A., Da Silva, C.C., Dias Filho, B.P., Nakamura, C.V., De Carvalho, J.E., Foglio, M.A., (2005) Quim. Nova, 28, p. 834Cui, E.J., Park, H.J., Wu, Q., Chung, I.S., Kim, J.Y., Baek, N.I., (2010) J. Appl. Biol. Chem., 53, p. 77Yayli, N., Yildirim, N., Usta, A., Özkurt, S., Akgün, V., Turk, J., (2003) Chemistry, 27, p. 749Jain, P.S., Bari, S.B., (2010) Asian J. Plant Sci., 9, p. 163Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Boyd, M., (1991) J. Natl. Cancer Inst., 83, p. 757Houghton, P., Fang, R., Techatanawat, I., Steventon, G., Hylands, P.J., Lee, C.C., (2007) Methods, 42, p. 377Bauer, D.L.V., Marie, R., Rasmussen, K.H., Kristensen, A., Mir, K.U., (2012) Nucleic Acids Res., 40, p. 11428Sinha, B.K., (1995) Drugs, 49, p. 11Baxter, J., Sen, N., Martínez, V.L., De Carandini, M.E.M., Schvartzman, J.B., Diffley, J.F.X., Aragón, L., (2011) Science, 331, p. 1328Ledzewicz, U., Schättler, H., Gahrooi, M.R., Dehkordi, S.M., (2013) Math. Biosci. Eng., 10, p. 803Wang, Y., Zhou, R., Liliemark, J., Gruber, A., Lindemalm, S., Albertioni, F., Liliemark, E., (2001) Leuk. Res., 25, p. 133Funayama, Y., Nishio, K., Wakabayashi, K., Nagao, M., Shimoi, K., Ohira, T., Hasegawa, S., Saijo, N., (1996) Mutat. Res., 349, p. 183Wang, H., Mao, Y., Chen, A.Y., Zhou, N., Lavoie, E.J., Liu, L.F., (2001) Biochemistry, 40, p. 3316Bandele, O.J., Osheroff, N., (2007) Biochemistry, 46, p. 609

    Bioatividade de três espécies vegetais nativas da Floresta Atlântica brasileira frente ao microcrustáceo Artemia salina

    Get PDF
    Este trabalho teve por objetivo a investigação fitoquímica e propriedades antioxidantes de extratos das folhas de Trigynaea oblongifolia Schltdl (Annonaceae), Ottonia frutescens Trel (Piperaceae), e Bathysa australis (St Hill) Hooz (Rubiaceae), bem como avaliar, in vitro, a letalidade frente ao microcrustáceo Artemia salina Leach. Os extratos foram preparados por maceração em metanol 10% (p/v) por sete dias, à temperatura ambiente. A atividade antioxidante dos extratos foi determinada pela metodologia que utiliza o radical estável DPPH. A toxicidade dos extratos foi avaliada frente ao microcrustáceo A. salina. Os extratos de O. frutescens e B. australis apresentaram as seguintes classes de metabólitos secundários: Alcalóides, Antraquinonas, Cumarinas, Polifenóis (Taninos), Saponinas. Nos extratos de T. oblongifolia, além dos metabólitos citados anteriormente, foi detectada a presença de Flavonóides. A atividade antioxidante, observada em 30 minutos na concentração de 24 µg/mL de extrato, foi de: O. frutescens - 38,3%, T. oblongifolia - 32,3%, e B. australis - 32,1%. A Concentração Letal, CL50, dos extratos em A. salina foi de: O. frutescens - 149,75 ± 1,02 µg/mL, T. oblongifolia - 148,8 ± 1,74 µg/mL, e B. australis - 684 ± 9,04 µg/mL. Neste contexto, destacamos as espécies, nativas da Floresta Atlântica, O. frutescens e T. oblongifolia de grande potencial na bioprospecção de moléculas biologicamente ativas
    corecore