22 research outputs found

    Analysis of genetic diversity within and among four rabbit genotypes using biochemical and molecular genetic markers

    Get PDF
    Genetic variations were detected in four different rabbit genotypes; Animal Production Research Institute (APRI) line, New-Zealand White (NZW), Baladi Black (BB) and Gabali (GAB) breeds. Ten individuals from the first three genotypes and seven individuals from GAB, were blood sampled. Isozymes (esterase and peroxidase) and sodium dodecyl sulphate (SDS)-protein markers were used to detect the genetic variations within these genotypes, whereas the random amplified polymorphic DNApolymerase chain reaction (RAPD-PCR) analysis using six random arbitrary primers were employed to assess the genetic variations and phylogenetic relationships among the four genotypes. The results show a variation in biochemical activity levels since, esterase profiles showed higher percentage of polymorphism (67.21%) than peroxidase (34.78%) and SDS-protein profiles (39.11 %). Moreover, the mean of the genetic similarity within the genotypes based on overall biochemical markers were 0.81 (APRI), 0.91 (NZW), 0.89 (BB) and 0.86 (GAB), which indicates high homogeneity within each of the four genotypes. The polymorphism percentage based on overall RAPD primers was 35.44% among these genotypes, which presents a kind of genetic diversity. From the dendrogram tree, the genotypes BB and GAB appeared to be closely related, while the APRI genotype was the most different.Keywords: Rabbits, genetic diversity, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDSPAGE), isozymes, random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR)African Journal of Biotechnology Vol. 12(20), pp. 2830-283

    Influence of Interleukin-6 (174G/C) Gene Polymorphism on Obesity in Egyptian Children

    Get PDF
    BACKGROUND: Obesity is a multi-factorial chronic disorder. A considerable number of studies have been performed to figure out whether there is an association between obesity and polymorphisms of gene IL-6 (174G/C), but the results are equivocal.AIM: This study aimed to find out whether the IL-6 (174G/C) gene was associated with the risk of developing obesity in Egyptian children.SUBJECTS AND METHODS: The study included 149 children and adolescents with age ranged between 9.5 – 18 years. Eighty-five of them were obese which BMIZ-score is > 2, and sixty-four children with BMIZ-score ≤ 2 served as control group. Serum level of IL-6 and genetic analysis for IL-6 (174G/C) gene polymorphism were done.RESULTS: Obese children had significantly higher serum levels of IL-6 as compared to those of control children (P = 0.003). A high percentage of IL-6 polymorphism GC was found in obese subjects (93.7%), while the control group had a higher percentage of IL-6 polymorphism GG (70.6 %).CONCLUSION: Our study showed that carriers of the C allele for the IL-6 (174G/C) polymorphism have higher BMI. As the G174C polymorphism is likely to affect IL-6 expression and its physiological regulation; consequently this polymorphism may affect adiposity

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Greenness assessment of two chromatographic methods developed for the determination of Mupirocin in two binary mixtures along with its impurity

    No full text
    Abstract Two simple, accurate and precise chromatographic methods have been developed and validated for estimating Mupirocin (MUP) in two binary mixtures. Mixture (1); with Fluticasone propionate (FLU) together with two of their impurities, namely; Pseudomonic acid-D (Pseud-D) and Fluticasone impurity C (FIC). Mixture (2); with Mometasone furoate (MF) along with Pseud-D impurity. High performance thin layer chromatography (HPTLC-densitometry) and high performance liquid chromatography (RP-HPLC) were the two proposed methods. In the HPTLC method, good separation of both mixtures was achieved by using HPTLC plates pre-coated with silica gel 60 F254 as stationary phase and the mobile phase consisted of toluene: chloroform: ethanol at a ratio of (5: 4: 2, by volume). The detection was carried out at 220 nm for MUP and 254 nm for FLU, MF, Pseud-D and FIC. In the HPLC method, chromatographic separation was carried out using Agilent Eclipse XDB (250 mm×4.6 mm, 5 μm) C18 column. For mixture (1), a mobile phase of methanol: sodium di-hydrogen phosphate (pH 3.0) was applied in stepwise gradient elution starting at ratios of (50: 50, v/v) and then switching to (80: 20, v/v) after 7 min at a flow rate of 1 mL.min− 1. Detection was performed using diode array detector at 220 nm for MUP and Pseud-D and 240 nm for FLU and FIC. For mixture (2), the same mobile phase was used, but in isocratic elution in the ratio (80: 20, v/v) at flow rate of 1 mL.min− 1 and detection at 220 nm for MUP and Pseud-D and 248 nm for MF. The two methods successfully separated the cited drugs and were used to determine the drugs in pure form as well as pharmaceutical dosage forms. Validation was done as per International Council on Harmonization guidelines. Furthermore, the greenness of the proposed methods compared to the reported method, was evaluated as per the National Environmental Method Index, analytical Eco scale, Green Analytical Procedure Index and Analytical Greenness metric approaches

    Clinical Utility of promoter methylation of the tumor suppressor genes DKK3, and RASSF1A in breast cancer patients

    Get PDF
    Background: DNA methylation is the commonest known epigenetic change that results in silencing of tumor suppressor genes. Promoter methylation of tumor suppressor genes has the potential for early detection of breast cancer. Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP) of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients and twenty healthy ladies as control group using MSP. Results: Methylation of DKK3 promoter was found in 22.5% of breast cancer patients, while DKK3 methylation was absent in both fibroadenoma patients and control group. Similarly, methylation of RASSF1 promoter was found in 17.5% of breast cancer patients and in none of fibroadenoma and control group. Conclusion: Promoter methylation of DKK3 and RASSF1 was found in breast cancer patients while absent in control group suggesting that tumorspecific methylation of the two genes (DKK3 and RASSF1A) might be a valuable biomarker for the early detection of breast cancer. Keywords: DNA methylation, Breast cancer, DKK3, RASSF
    corecore