201 research outputs found

    Marital status and occupation in relation to short-term case fatality after a first coronary event - a population based cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although marital status and low occupation level has been associated with mortality, the relationship with case fatality rates (CFR) after a coronary event (CE) is unclear. This study explored whether incidence of CE and short-term CFR differ between groups defined in terms of marital status and occupation, and if this could be explained by biological and life-style risk factors.</p> <p>Methods</p> <p>Population-based cohort study of 33,224 subjects (67% men), aged 27 to 61 years, without history of myocardial infarction, who were enrolled between 1974 and 1992. Incidence of CE, and CFR (death during the first day or within 28 days after CE, including out-of-hospital deaths) was examined over a mean follow-up of 21 years.</p> <p>Results</p> <p>A total of 3,035 men (6.0 per 1000 person-years) and 507 women (2.4 per 1000) suffered a first CE during follow-up. CFR (during the 1<sup>st </sup>day) was 29% in men and 23% in women. After risk factor adjustments, unmarried status in men, but not in women, was significantly associated with increased risk of suffering a CE [hazard ratios (HR) 1.10, 95% CI: 0.97-1.24; 1.42: 1.27-1.58 and 1.77: 1.31-2.40 for never married, divorced and widowed, respectively, compared to married]. Unmarried status, in both gender, was also related with an increased CFR (1<sup>st </sup>day), taking potential confounders into account (odds ratio (OR) 2.14, 95% CI: 1.63-2.81; 1.91: 1.50-2.43 and 1.49: 0.77-2.89 for never married, divorced and widowed, respectively, compared to married men. Corresponding figures for women was 2.32: 0.93-5.81; 1.87: 1.04-3.36 and 2.74: 1.03-7.28. No differences in CFR (1<sup>st </sup>day) were observed between occupational groups in neither gender.</p> <p>Conclusions</p> <p>In this population-based Swedish cohort, short-term CFR was significantly related to unmarried status in men and women. This relationship was not explained by biological-, life-style factors or occupational level.</p

    Global report on preterm birth and stillbirth (2 of 7): discovery science

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal and abnormal processes of pregnancy and childbirth are poorly understood. This second article in a global report explains what is known about the etiologies of preterm births and stillbirths and identifies critical gaps in knowledge. Two important concepts emerge: the continuum of pregnancy, beginning at implantation and ending with uterine involution following birth; and the multifactorial etiologies of preterm birth and stillbirth. Improved tools and data will enable discovery scientists to identify causal pathways and cost-effective interventions.</p> <p>Pregnancy and parturition continuum</p> <p>The biological process of pregnancy and childbirth begins with implantation and, after birth, ends with the return of the uterus to its previous state. The majority of pregnancy is characterized by rapid uterine and fetal growth without contractions. Yet most research has addressed only uterine stimulation (labor) that accounts for <0.5% of pregnancy.</p> <p>Etiologies</p> <p>The etiologies of preterm birth and stillbirth differ by gestational age, genetics, and environmental factors. Approximately 30% of all preterm births are indicated for either maternal or fetal complications, such as maternal illness or fetal growth restriction. Commonly recognized pathways leading to preterm birth occur most often during the gestational ages indicated: (1) inflammation caused by infection (22-32 weeks); (2) decidual hemorrhage caused by uteroplacental thrombosis (early or late preterm birth); (3) stress (32-36 weeks); and (4) uterine overdistention, often caused by multiple fetuses (32-36 weeks). Other contributors include cervical insufficiency, smoking, and systemic infections. Many stillbirths have similar causes and mechanisms. About two-thirds of late fetal deaths occur during the antepartum period; the other third occur during childbirth. Intrapartum asphyxia is a leading cause of stillbirths in low- and middle-income countries.</p> <p>Recommendations</p> <p>Utilizing new systems biology tools, opportunities now exist for researchers to investigate various pathways important to normal and abnormal pregnancies. Improved access to quality data and biological specimens are critical to advancing discovery science. Phenotypes, standardized definitions, and uniform criteria for assessing preterm birth and stillbirth outcomes are other immediate research needs.</p> <p>Conclusion</p> <p>Preterm birth and stillbirth have multifactorial etiologies. More resources must be directed toward accelerating our understanding of these complex processes, and identifying upstream and cost-effective solutions that will improve these pregnancy outcomes.</p

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    Host Specialization and Dispersal in Avian Haemosporidians

    Get PDF
    In order to be able to understand the ecological and evolutionary processes involved in the emergence of infectious diseases, one needs to comprehend how parasites arrive at new geographical areas and how they manage to maintain viable populations and even expand their ranges. We discuss host specificity in avian haemosporidians and how encounter and compatibility filters affect the dispersal of avian haemosporidians, and how these filters affect avian haemosporidian assemblages at different spatial and evolutionary scales. There are at least three important barriers to the dispersal of avian haemosporidians: (i) geographic barriers, (ii) environmental barriers, and (iii) interspecies barriers. In this chapter, we discuss the factors involved in these barriers and their effects on the structure of avian haemosporidian assemblages. Host specificity plays an important role in parasite dispersal, and in the case of avian haemosporidians that are vector-borne parasites, it needs to be evaluated both at the vector and bird host levels. Understanding the effects of these factors on host–vector–parasite dynamics is important to unravel the dispersal and diversification mechanisms of avian haemosporidians. We end this chapter reviewing host specialization in avian haemosporidians of tropical regions, discussing the mechanisms involved in the dispersal and specialization of these parasites and point out important research gaps that need attention
    corecore