26 research outputs found
Plastic pollution and health metrics in wild juvenile green sea turtles (Chelonia mydas) from two Ecuadorian national parks: Galápagos and Machalilla
Marine vertebrates, particularly green sea turtles, are especially vulnerable to plastic pollution through ingestion or entanglement. This study investigated wild juvenile green sea turtles (Chelonia mydas) from two Ecuadorian national parks (Galá pagos and Machallilla) to assess the prevalence of plastic pollution in their feces and its potential impact on various health metrics. We analyzed fecal samples from 46 juvenile green sea turtles using Fourier transform infrared
spectroscopy (FT-IR) to quantify microplastics (MPs). A complementary methodology using pressurized liquid extraction with double-shot pyrolysis�mass spectrometry gas chromatography (Pyr-GC/MS) was also employed to quantify synthetic polymer mass concentrations. The results from these analyses were compared with blood analytes. FT-IR analysis revealed a mean of 4.4±5.2 MPs/g in fecal samples, with the highest quantities found in the Galápagos Marine
Reserve (GMR). The most common MPs shape identified were fibers (x̄ = 3.8±4.5 MPs/g), and the predominant synthetic polymers were polyvinyl alcohol (PVOH) and polyacrylates (PMMA). The daily intake of MPs by the sampled turtles ranged from a minimum of 312±409 MPs/day to a maximum of 430±563 MPs/day. Pyr�GC/MS analysis detected polyethylene (PE) with a mean of 367±1158 µg/g and polypropylene (PP) with a mean of 155±434 µg/g in fecal samples, with the
highest pollution levels observed in the GMR. Both FT-IR and Pyr-GC/MS techniques detected plastic pollution in 98% of the sampled population. Although both FT-IR and Pyr-GC/MS are reliable methods, they produced slightly different results due to methodological variations. However, both
supported the finding that turtles in the GMR were exposed to higher rates of plastic ingestion. Despite the turtles appearing clinically healthy based on blood analysis, significant differences in eleven health metrics were observed between turtles classified as less at risk and those most at risk for plastic pollution. Further
research is necessary to understand the potential health implications of these finding
A Special Issue of The Behavior Analyst/Perspectives on Behavior Science: Learning: No Brain Required
Health assessment of Conolophus subcristatus, Conolophus pallidus, and C. subcristatus X Amblyrhynchus cristatus hybrid (Galápagos land iguanas)
The land iguanas, Conolophus pallidus and Conolophus subcristatu are large and charismatic lizards endemic to the Galápagos archipelago, but little information exists on their normal health parameters. The former is restricted to Santa Fe island, while C. subcristatus inhabits the islands of the central and western region of the archipelago. Both species are classified as vulnerable by the IUCN Red List of Threatened Species. As part of a population health assessment authorized by the Galápagos National Park, wild adult iguanas from three islands (North Seymour, South Plazas, and Santa Fe) were captured in July 2018. Data from a single C. subcristatus X Amblyrhynchus cristatus hybrid captured on South Plazas is also included. We analyzed blood samples drawn from 52 healthy wild adult land iguanas captured on three islands. An iSTAT portable blood analyzer was used to obtain values for pH, lactate, pO2, pCO2, HCO3-, sO2%, hematocrit, packed cell volume (PCV), hemoglobin Na, K, iCa, and glucose. Standard laboratory hematology techniques were employed for PCV determination; resulting values were also compared to the hematocrit values generated by the iSTAT. Body temperature, heart rate, respiratory rate, and body measurements were also recorded and compared to previously published data for the marine iguana (Amblyrhynchus cristatus), which shares a common ancestor with the land iguana. The data reported here provide preliminary baseline values that may be useful in comparisons between captive and wild populations, between wild populations, and in detecting changes in health status among Galápagos land iguanas affected by anthropogenic threats, climate change, or natural disturbances
Cephalopods in neuroscience: regulations, research and the 3Rs
Cephalopods have been utilised in neurosci- ence research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentia- tion) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of ‘‘live cephalopods’’ became regulated within the European Union by Directive 2010/63/EU on the ‘‘Protection of Animals used for Scientific Purposes’’, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs princi- ples (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce ‘‘guidelines’’ and the potential contribution of neuroscience research to cephalopod welfare
