336 research outputs found
Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru
Background: New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad
Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru.
Methods: We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated
both by daily evaluations and by an end-course evaluation.
Results: Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P less than 0.001, n = 21). Most comments
(76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures.
Conclusion: Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was
a success.The University of Washington AMAUTA Global Training in Health Informatics, a Fogarty International Center/NIH funded grant (5D43TW007551), and the AMAUTA Research Practica Program, a Puget Sound Partners for Global Health-funded grant
Intracellular directed evolution of proteins from combinatorial libraries based on conditional phage replication
Directed evolution is a powerful tool to improve the characteristics of biomolecules. Here we present a protocol for the intracellular evolution of proteins with distinct differences and advantages in comparison with established techniques. These include the ability to select for a particular function from a library of protein variants inside cells, minimizing undesired coevolution and propagation of nonfunctional library members, as well as allowing positive and negative selection logics using basally active promoters. A typical evolution experiment comprises the following stages: (i) preparation of a combinatorial M13 phagemid (PM) library expressing variants of the gene of interest (GOI) and preparation of the Escherichia coli host cells; (ii) multiple rounds of an intracellular selection process toward a desired activity; and (iii) the characterization of the evolved target proteins. The system has been developed for the selection of new orthogonal transcription factors (TFs) but is capable of evolving any gene—or gene circuit function—that can be linked to conditional M13 phage replication. Here we demonstrate our approach using as an example the directed evolution of the bacteriophage λ cI TF against two synthetic bidirectional promoters. The evolved TF variants enable simultaneous activation and repression against their engineered promoters and do not cross-react with the wild-type promoter, thus ensuring orthogonality. This protocol requires no special equipment, allowing synthetic biologists and general users to evolve improved biomolecules within ~7 weeks
Daptomycin antimicrobial activity tested against methicillin-resistant staphylococci and vancomycin-resistant enterococci isolated in European medical centers (2005)
BACKGROUND: Daptomycin is a cyclic lipopeptide with potent activity and broad spectrum against Gram-positive bacteria currently used for the treatment of complicated skin and skin structure infections and bacteremia, including right sided endocarditis. We evaluated the in vitro activity of this compound and selected comparator agents tested against clinical strains of staphylococci and enterococci collected in European medical centers in 2005. METHODS: A total of 4,640 strains from 23 medical centers located in 10 European countries, Turkey and Israel (SENTRY Program platform) were tested for susceptibility by reference broth microdilution methods according to Clinical and Laboratory Standards Institute guidelines and interpretative criteria. Mueller-Hinton broth was supplemented to 50 mg/L Ca(++ )for testing daptomycin. Results for oxacillin (methicillin)-resistant staphylococci and vancomycin-resistant enterococci were analyzed separately. RESULTS: Oxacillin resistance rates among Staphylococcus aureus varied from 2.1% in Sweden to 42.5% in the United Kingdom (UK) and 54.7% in Ireland (29.1% overall), while vancomycin resistance rates varied from 0.0% in France, Sweden and Switzerland to 66.7% in the UK and 71.4% in Ireland among Enterococcus faecium (17.9% overall). All S. aureus strains were inhibited at daptomycin MIC of 1 mg/L (MIC(50/90), 0.25/0.5 mg/L; 100.0% susceptible) and only one coagulase-negative staphylococci strain (0.1%) showed an elevated (>1 mg/L) daptomycin MIC value (4 mg/L). Among E. faecalis (MIC(50/90), 0.5/1 mg/L; 100% susceptible) the highest daptomycin MIC value was 2 mg/L; while among E. faecium (MIC(50/90), 2/4 mg/L; 100% susceptible) the highest MIC result was 4 mg/L. CONCLUSION: Daptomycin showed excellent in vitro activity against staphylococci and enterococci collected in European medical centers in 2005 and resistance to oxacillin, vancomycin or quinupristin/dalfopristin did not compromise its activity overall against these pathogens. Based on these results and those of previous publications, daptomycin appears to be an excellent therapeutic option for serious infections caused by oxacillin-resistant staphylococci and vancomycin-resistant enterococci in Europe
The insecure airway: a comparison of knots and commercial devices for securing endotracheal tubes
BACKGROUND: Endotracheal Tubes (ETTs) are commonly secured using adhesive tape, cloth tape, or commercial devices. The objectives of the study were (1) To compare degrees of movement of ETTs secured with 6 different commercial devices and (2) To compare movement of ETTs secured with cloth tape tied with 3 different knots (hitches). METHODS: A 17 cm diameter PVC tube with 14 mm "mouth" hole in the side served as a mannequin. ETTs were subjected to repeated jerks, using a cable and pulley system. Measurements: (1) Total movement of ETTs relative to "mouth" (measure used for devices) (2) Slippage of ETT through securing knot (measure used for knots). RESULTS: Among commercial devices, the Dale(® )showed less movement than other devices, although some differences between devices did not reach significance. Among knots, Magnus and Clove Hitches produced less slippage than the Cow Hitch, but these differences did not reach statistical significance. CONCLUSION: Among devices tested, the Dale(® )was most secure. Within the scope offered by the small sample sizes, there were no statistically significant differences between the knots in this study
Comparison of glucosamine sulfate and a polyherbal supplement for the relief of osteoarthritis of the knee: a randomized controlled trial [ISRCTN25438351]
<p>Abstract</p> <p>Background</p> <p>The efficacy and safety of a dietary supplement derived from South American botanicals was compared to glucosamine sulfate in osteoarthritis subjects in a Mumbai-based multi-center, randomized, double-blind study.</p> <p>Methods</p> <p>Subjects (n = 95) were screened and randomized to receive glucosamine sulfate (n = 47, 1500 mg/day) or reparagen (n = 48, 1800 mg/day), a polyherbal consisting of 300 mg of vincaria (<it>Uncaria guianensis</it>) and 1500 mg of RNI 249 (<it>Lepidium meyenii</it>) administered orally, twice daily. Primary efficacy variable was response rate based on a 20% improvement in WOMAC pain scores. Additional outcomes were WOMAC scores for pain, stiffness and function, visual analog score (VAS) for pain, with assessments at 1, 2, 4, 6 and 8 weeks. Tolerability, investigator and subject global assessments and rescue medication consumption (paracetamol) were measured together with safety assessments including vital signs and laboratory based assays.</p> <p>Results</p> <p>Subject randomization was effective: age, gender and disease status distribution was similar in both groups. The response rates (20% reduction in WOMAC pain) were substantial for both glucosamine (89%) and reparagen (94%) and supported by investigator and subject assessments. Using related criteria response rates to reparagen were favorable when compared to glucosamine. Compared to baseline both treatments showed significant benefits in WOMAC and VAS outcomes within one week (P < 0.05), with a similar, progressive improvement over the course of the 8 week treatment protocol (45–62% reduction in WOMAC or VAS scores). Tolerability was excellent, no serious adverse events were noted and safety parameters were unchanged. Rescue medication use was significantly lower in the reparagen group (p < 0.01) at each assessment period. Serum IGF-1 levels were unaltered by treatments.</p> <p>Conclusion</p> <p>Both reparagen and glucosamine sulfate produced substantial improvements in pain, stiffness and function in subjects with osteoarthritis. Response rates were high and the safety profile was excellent, with significantly less rescue medication use with reparagen. Reparagen represents a new natural productive alternative in the management of joint health.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN25438351.</p
Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum
<p>Abstract</p> <p>Background</p> <p>Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of <it>Plasmodium </it><it>falciparum </it>through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration.</p> <p>Results</p> <p>Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle.</p> <p>Conclusions</p> <p>We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c), a Zinc finger transcription factor (PFL0465c) both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c).</p
Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation.
Identifying the forces that drive proteins to misfold and aggregate, rather than to fold into their functional states, is fundamental to our understanding of living systems and to our ability to combat protein deposition disorders such as Alzheimer's disease and the spongiform encephalopathies. We report here the finding that the balance between hydrophobic and hydrogen bonding interactions is different for proteins in the processes of folding to their native states and misfolding to the alternative amyloid structures. We find that the minima of the protein free energy landscape for folding and misfolding tend to be respectively dominated by hydrophobic and by hydrogen bonding interactions. These results characterise the nature of the interactions that determine the competition between folding and misfolding of proteins by revealing that the stability of native proteins is primarily determined by hydrophobic interactions between side-chains, while the stability of amyloid fibrils depends more on backbone intermolecular hydrogen bonding interactions
Inhibition of Melanogenesis by the Pyridinyl Imidazole Class of Compounds: Possible Involvement of the Wnt/β-Catenin Signaling Pathway
While investigating the role of p38 MAPK in regulating melanogenesis, we found that pyridinyl imidazole inhibitors class compounds as well as the analog compound SB202474, which does not inhibit p38 MAPK, suppressed both α-MSH-induced melanogenesis and spontaneous melanin synthesis. In this study, we demonstrated that the inhibitory activity of the pyridinyl imidazoles correlates with inhibition of the canonical Wnt/β-catenin pathway activity. Imidazole-treated cells showed a reduction in the level of Tcf/Lef target genes involved in the β-catenin signaling network, including ubiquitous genes such as Axin2, Lef1, and Wisp1 as well as cell lineage-restricted genes such as microphthalmia-associated transcription factor and dopachrome tautomerase. Although over-expression of the Wnt signaling pathway effector β-catenin slightly restored the melanogenic program, the lack of complete reversion suggested that the imidazoles interfered with β-catenin-dependent transcriptional activity rather than with β-catenin expression. Accordingly, we did not observe any significant change in β-catenin protein expression. The independence of p38 MAPK activity from the repression of Wnt/β-catenin signaling pathway was confirmed by small interfering RNA knockdown of p38 MAPK expression, which by contrast, stimulated β-catenin-driven gene expression. Our data demonstrate that the small molecule pyridinyl imidazoles possess two distinct and opposite mechanisms that modulate β-catenin dependent transcription: a p38 inhibition-dependent effect that stimulates the Wnt pathway by increasing β-catenin protein expression and an off-target mechanism that inhibits the pathway by repressing β-catenin protein functionality. The p38-independent effect seems to be dominant and, at least in B16-F0 cells, results in a strong block of the Wnt/β-catenin signaling pathway
- …