1,504 research outputs found

    Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates

    Get PDF
    Dual-phase molten salt-ceramic membranes show high permselectivity for CO2 when molten carbonate is supported in a porous oxygen-ion and/or electron conductor. In this arrangement, the support likely contributes to permeation. Thus, if one is to understand and ultimately design membranes, it is also important to perform experiments with an inert support where permeation relies upon the molten carbonate properties alone. Here, a nominally inert material (Al2O3) was used in order to restrict permeation to molten carbonate. Model Al2O3 dual-phase membranes were fabricated using laser drilling to provide an order of magnitude difference in molten salt-gas interfacial area between feed and permeate sides. Molten carbonate thickness in the model membranes was also varied, independent of the molten salt-gas interfacial area. For all thicknesses studied, CO2 permeation rates showed a significant temperature dependence from 500 to 750 °C, suggesting an activated process was rate-limiting, likely a permeate-side molten salt-gas interfacial process, i.e. desorption of CO2. We applied these findings in asymmetric hollow-fibre supports, a geometry with inherent modularity and scalability, by developing a new carbonate infiltration method to control molten carbonate distribution within the hollow fibre. Compared to a conventionally prepared dual-phase hollow-fibre membrane with an uncontrolled distribution of carbonates, permeation rates were increased by up to 4 times when the molten salt was confined to the packed-pore network, i.e. without infiltrating the hollow-fibre micro-channels. X-ray micro-CT investigations supported the idea that the resulting increase in interfacial area for desorption of CO2 was the key structural difference contributing to increased permeation rates. For CO2 separation, where large volumes of gas must be processed, such increases in permeation rates will reduce the demand for membrane materials, although one must note the higher permeation rates achievable with oxygen-ion and/or electron conducting supports

    Selection criteria of Zebrafish male donors for sperm cryopreservation

    Get PDF
    Selection criteria for sperm cryopreservation are highly relevant in zebrafish since sperm quality is particularly variable in this species. Successful cryopreservation depends on high-quality sperm, which can only be ensured by the selection of breeders. Consequently, male selection and management are a priority to improve cryopreservation, and therefore, this study aimed to characterize optimal age and sperm collection frequency in zebrafish. For this purpose, males from wild type (AB) and from a transgenic line [Tg(runx2:eGFP)] were sampled at 6, 8, 12, and 14 months. For each age, sperm were collected at time 0 followed by samplings at 2, 7, and 14 days of rest. Sperm quality was assessed according to motility and membrane viability parameters. Quality assessment showed that Tg(runx2:eGFP) displayed significantly higher motility than AB and younger males showed higher motility in both lines. Sperm collection frequency affected membrane viability. While AB fish recovered sperm viability after 14 days of rest, Tg(runx2:eGFP) could not recover. Consequently, it may be important to study the sperm quality of each zebrafish line before sperm cryopreservation. Taking into consideration the results achieved in both lines, sperm collection should be performed between 6 and 8 months of age with a minimum collection interval of 14 days.N730984, EBB-EAPA_501/2016, PEst-C/MAR/LA0015/2011info:eu-repo/semantics/publishedVersio

    Prophylactic Effect of a Therapeutic Vaccine against TB Based on Fragments of Mycobacterium tuberculosis

    Get PDF
    The prophylactic capacity of the RUTI® vaccine, based on fragmented cells of Mycobacterium tuberculosis, has been evaluated in respect to aerosol challenge with virulent bacilli. Subcutaneous vaccination significantly reduced viable bacterial counts in both lungs and spleens of C57Bl mice, when challenged 4 weeks after vaccination. RUTI® protected the spleen less than BCG. Following a 9 month vaccination-challenge interval, protection was observed for the lungs, but not for the spleen. Survival of infected guinea pigs was prolonged by vaccination given 5 weeks before challenge. Inoculations of RUTI® shortly after infection significantly reduced the viable bacterial counts in the lungs, when compared with infected control mice. Thus, vaccination by RUTI® has potential for both the prophylaxis and immunotherapy of tuberculosis

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Torsade de pointes caused by polypharmacy and substance abuse in a patient with human immunodeficiency virus

    Get PDF
    Drug-induced QT prolongation is a potentially dangerous adverse effect of some medication combinations. When QT prolongation progresses to torsade de pointes, life-threatening or fatal outcomes may result. A 57-year-old man with a history of human immunodeficiency syndrome on abacavir, nevirapine, tenofovir, voriconazole, and methadone presented to the emergency department with a chief complaint of new-onset seizures. The physical exam was unremarkable. The electrocardiogram demonstrated sinus bradycardia and a prolonged QTc interval of 690 ms. In the emergency department, he had several episodes of torsade de pointes (TdP) and ventricular tachycardia that resolved spontaneously. These episodes were accompanied by an alteration in mentation and generalized twitching. Magnesium and amiodarone were effective in terminating the dysrhythmia. The patient had multiple risk factors for prolonged QT syndrome including human immunodeficiency virus infection, methadone therapy, and polypharmacy leading to potential drug interactions. Physicians must be aware of multidrug interactions potentiating QT prolongation and leading to torsade de pointes

    A Genealogical Interpretation of Principal Components Analysis

    Get PDF
    Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    The Road Less Traveled: Regulation of Leukocyte Migration Across Vascular and Lymphatic Endothelium by Galectins

    Get PDF
    Leukocyte entry from the blood into inflamed tissues, exit into the lymphatics, and migration to regional lymph nodes are all crucial processes for mounting an effective adaptive immune response. Leukocytes must cross two endothelial cell layers, the vascular and the lymphatic endothelial cell layers, during the journey from the blood to the lymph node. The proteins and cellular interactions which regulate leukocyte migration across the vascular endothelium are well studied; however, little is known about the factors that regulate leukocyte migration across the lymphatic endothelium. Here, we will summarize evidence for a role for galectins, a family of carbohydrate-binding proteins, in regulating leukocyte migration across the vascular endothelium and propose that galectins are also involved in leukocyte migration across the lymphatic endothelium
    corecore