27 research outputs found

    Recombination rate and selection strength in HIV intra-patient evolution

    Get PDF
    The evolutionary dynamics of HIV during the chronic phase of infection is driven by the host immune response and by selective pressures exerted through drug treatment. To understand and model the evolution of HIV quantitatively, the parameters governing genetic diversification and the strength of selection need to be known. While mutation rates can be measured in single replication cycles, the relevant effective recombination rate depends on the probability of coinfection of a cell with more than one virus and can only be inferred from population data. However, most population genetic estimators for recombination rates assume absence of selection and are hence of limited applicability to HIV, since positive and purifying selection are important in HIV evolution. Here, we estimate the rate of recombination and the distribution of selection coefficients from time-resolved sequence data tracking the evolution of HIV within single patients. By examining temporal changes in the genetic composition of the population, we estimate the effective recombination to be r=1.4e-5 recombinations per site and generation. Furthermore, we provide evidence that selection coefficients of at least 15% of the observed non-synonymous polymorphisms exceed 0.8% per generation. These results provide a basis for a more detailed understanding of the evolution of HIV. A particularly interesting case is evolution in response to drug treatment, where recombination can facilitate the rapid acquisition of multiple resistance mutations. With the methods developed here, more precise and more detailed studies will be possible, as soon as data with higher time resolution and greater sample sizes is available.Comment: to appear in PLoS Computational Biolog

    Correlated Evolution of Nearby Residues in Drosophilid Proteins

    Get PDF
    Here we investigate the correlations between coding sequence substitutions as a function of their separation along the protein sequence. We consider both substitutions between the reference genomes of several Drosophilids as well as polymorphisms in a population sample of Zimbabwean Drosophila melanogaster. We find that amino acid substitutions are “clustered” along the protein sequence, that is, the frequency of additional substitutions is strongly enhanced within ≈10 residues of a first such substitution. No such clustering is observed for synonymous substitutions, supporting a “correlation length” associated with selection on proteins as the causative mechanism. Clustering is stronger between substitutions that arose in the same lineage than it is between substitutions that arose in different lineages. We consider several possible origins of clustering, concluding that epistasis (interactions between amino acids within a protein that affect function) and positional heterogeneity in the strength of purifying selection are primarily responsible. The role of epistasis is directly supported by the tendency of nearby substitutions that arose on the same lineage to preserve the total charge of the residues within the correlation length and by the preferential cosegregation of neighboring derived alleles in our population sample. We interpret the observed length scale of clustering as a statistical reflection of the functional locality (or modularity) of proteins: amino acids that are near each other on the protein backbone are more likely to contribute to, and collaborate toward, a common subfunction

    Genetic Diversity in the SIR Model of Pathogen Evolution

    Get PDF
    We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR). We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts), where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R0(1+s)) is higher than the fitness of the resident strain (R0). We show that this invasion probability is given by the relative increment in R0 of the new pathogen (s). By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A

    Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins

    Get PDF
    The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs

    Causes of molecular convergence and parallelism in protein evolution

    Get PDF
    To what extent is the convergent evolution of protein function attributable to convergent or parallel changes at the amino acid level? The mutations that contribute to adaptive protein evolution may represent a biased subset of all possible beneficial mutations owing to mutation bias and/or variation in the magnitude of deleterious pleiotropy. A key finding is that the fitness effects of amino acid mutations are often conditional on genetic background. This context dependence (epistasis) can reduce the probability of convergence and parallelism because it reduces the number of possible mutations that are unconditionally acceptable in divergent genetic backgrounds. Here, I review factors that influence the probability of replicated evolution at the molecular level
    corecore