840 research outputs found
Recommended from our members
Software design for the Tritium System Test Assembly
The control system for the Tritium Systems Test Assembly (TSTA) must execute complicated algorithms for the control of several sophisticated subsystems. It must implement this control with requirements for easy modifiability, for high availability, and provide stringent protection for personnel and the environment. Software techniques used to deal with these requirements are described, including modularization based on the structure of the physical systems, a two-level hierarchy of concurrency, a dynamically modifiable man-machine interface, and a specification and documentation language based on a computerized form of structured flowcharts
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Understanding person acquisition using an interactive activation and competition network
Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/
A Snapshot of Online Wildlife Trade : Australian e-commerce trade of native and non-native pets
Funding This project was funded by the Centre for Invasive Species Solutions (Project PO1-I-001). Adam Toomes was additionally supported by the FJ Sandoz PhD Scholarship. Pablo GarcíaDíaz was funded by NERC grants NE/S011641/1 (Newton LATAM programme) and 2022GCBCCONTAIN.Peer reviewedPublisher PD
Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials
The vibrational density of states (VDOS) of nanoclusters and nanocrystalline
materials are derived from molecular-dynamics simulations using empirical
tight-binding potentials. The results show that the VDOS inside nanoclusters
can be understood as that of the corresponding bulk system compressed by the
capillary pressure. At the surface of the nanoparticles the VDOS exhibits a
strong enhancement at low energies and shows structures similar to that found
near flat crystalline surfaces. For the nanocrystalline materials an increased
VDOS is found at high and low phonon energies, in agreement with experimental
findings. The individual VDOS contributions from the grain centers, grain
boundaries, and internal surfaces show that, in the nanocrystalline materials,
the VDOS enhancements are mainly caused by the grain-boundary contributions and
that surface atoms play only a minor role. Although capillary pressures are
also present inside the grains of nanocrystalline materials, their effect on
the VDOS is different than in the cluster case which is probably due to the
inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.
Amides do not always work: observation of guest binding in an amide-functionalised porous host
An amide-functionalised metal organic frame-work (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g-1 at 20 bar and 298 K. MFM-136 is the first example of acylamide pyrimidyl isophthalate MOF without open metal sites, and thus provides a unique platform to study guest bind-ing, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed un-ambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not neces-sarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties
Extended chiral algebras and the emergence of SU(2) quantum numbers in the Coulomb gas
We study a set of chiral symmetries contained in degenerate operators beyond
the `minimal' sector of the c(p,q) models. For the operators
h_{(2j+2)q-1,1}=h_{1,(2j+2)p-1} at conformal weight [ (j+1)p-1 ][ (j+1)q -1 ],
for every 2j \in N, we find 2j+1 chiral operators which have quantum numbers of
a spin j representation of SU(2). We give a free-field construction of these
operators which makes this structure explicit and allows their OPEs to be
calculated directly without any use of screening charges. The first non-trivial
chiral field in this series, at j=1/2, is a fermionic or para-fermionic
doublet. The three chiral bosonic fields, at j=1, generate a closed W-algebra
and we calculate the vacuum character of these triplet models.Comment: 23 pages Late
The transmission problem on a three-dimensional wedge
We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is carried out in two formulations leading to rather different spectral pictures. One formulation is in terms of square integrable boundary data, the other is in terms of finite energy solutions. We use the layer potential method, which requires the harmonic analysis of a non-commutative non-unimodular group associated with the wedge
Origin and Evolution of Saturn's Ring System
The origin and long-term evolution of Saturn's rings is still an unsolved
problem in modern planetary science. In this chapter we review the current
state of our knowledge on this long-standing question for the main rings (A,
Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During
the Voyager era, models of evolutionary processes affecting the rings on long
time scales (erosion, viscous spreading, accretion, ballistic transport, etc.)
had suggested that Saturn's rings are not older than 100 My. In addition,
Saturn's large system of diffuse rings has been thought to be the result of
material loss from one or more of Saturn's satellites. In the Cassini era, high
spatial and spectral resolution data have allowed progress to be made on some
of these questions. Discoveries such as the ''propellers'' in the A ring, the
shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume
provide new constraints on evolutionary processes in Saturn's rings. At the
same time, advances in numerical simulations over the last 20 years have opened
the way to realistic models of the rings's fine scale structure, and progress
in our understanding of the formation of the Solar System provides a
better-defined historical context in which to understand ring formation. All
these elements have important implications for the origin and long-term
evolution of Saturn's rings. They strengthen the idea that Saturn's rings are
very dynamical and rapidly evolving, while new arguments suggest that the rings
could be older than previously believed, provided that they are regularly
renewed. Key evolutionary processes, timescales and possible scenarios for the
rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from
Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009)
537-57
- …