168 research outputs found

    Minimal cubic cones via Clifford algebras

    Full text link
    We construct two infinite families of algebraic minimal cones in RnR^{n}. The first family consists of minimal cubics given explicitly in terms of the Clifford systems. We show that the classes of congruent minimal cubics are in one to one correspondence with those of geometrically equivalent Clifford systems. As a byproduct, we prove that for any n4n\ge4, n16k+1n\ne 16k+1, there is at least one minimal cone in RnR^{n} given by an irreducible homogeneous cubic polynomial. The second family consists of minimal cones in Rm2R^{m^2}, m2m\ge2, defined by an irreducible homogeneous polynomial of degree mm. These examples provide particular answers to the questions on algebraic minimal cones posed by Wu-Yi Hsiang in the 1960's.Comment: Final version, corrects typos in Table

    On the geometry of closed G2-structure

    Full text link
    We give an answer to a question posed recently by R.Bryant, namely we show that a compact 7-dimensional manifold equipped with a G2-structure with closed fundamental form is Einstein if and only if the Riemannian holonomy of the induced metric is contained in G2. This could be considered to be a G2 analogue of the Goldberg conjecture in almost Kahler geometry. The result was generalized by R.L.Bryant to closed G2-structures with too tightly pinched Ricci tensor. We extend it in another direction proving that a compact G2-manifold with closed fundamental form and divergence-free Weyl tensor is a G2-manifold with parallel fundamental form. We introduce a second symmetric Ricci-type tensor and show that Einstein conditions applied to the two Ricci tensors on a closed G2-structure again imply that the induced metric has holonomy group contained in G2.Comment: 14 pages, the Einstein condition in the assumptions of the Main theorem is generalized to the assumption that the Weyl tensor is divergence-free, clarity improved, typos correcte

    Born-Infeld particles and Dirichlet p-branes

    Get PDF
    Born-Infeld theory admits finite energy point particle solutions with δ\delta-function sources, BIons. I discuss their role in the theory of Dirichlet pp-branes as the ends of strings intersecting the brane when the effects of gravity are ignored. There are also topologically non-trivial electrically neutral catenoidal solutions looking like two pp-branes joined by a throat. The general solution is a non-singular deformation of the catenoid if the charge is not too large and a singular deformation of the BIon solution for charges above that limit. The intermediate solution is BPS and Coulomb-like. Performing a duality rotation we obtain monopole solutions, the BPS limit being a solution of the abelian Bogolmol'nyi equations. The situation closely resembles that of sub and super extreme black-brane solutions of the supergravity theories. I also show that certain special Lagrangian submanifolds of Cp{\Bbb C}^p, p=3,4,5p=3,4,5, may be regarded as supersymmetric configurations consisting of pp-branes at angles joined by throats which are the sources of global monopoles. Vortex solutions are also exhibited.Comment: 40 pages Latex file, no figure

    Seismic Behaviour of the Christchurch Women's Hospital

    Get PDF
    1-pageThe objective of this project is to collect perishable seismic response data from the baseisolated Christchurch Women's Hospital. The strong and continuing sequence of aftershocks presents a unique opportunity to capture high-fidelity data from a modern base-isolated facility. These measurements will provide quantitative information required to assess the mechanisms at play in this and in many other seismically-isolated structures

    M-theory on eight-manifolds revisited: N=1 supersymmetry and generalized Spin(7) structures

    Full text link
    The requirement of N=1{\cal N}=1 supersymmetry for M-theory backgrounds of the form of a warped product M×wX{\cal M}\times_{w}X, where XX is an eight-manifold and M{\cal M} is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ\xi on XX. ξ\xi lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y:=X×S1Y:=X\times S^1, where S1S^1 is a circle of constant radius, implying the reduction of the structure group of YY to Spin(7)Spin(7). In general, however, there is no reduction of the structure group of XX itself. This situation can be described in the language of generalized Spin(7)Spin(7) structures, defined in terms of certain spinors of Spin(TYTY)Spin(TY\oplus T^*Y). We express the condition for N=1{\cal N}=1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in XX in terms of a `preferred' Spin(7)Spin(7) structure, we show that the requirement of N=1{\cal N}=1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27\bf{27} of Spin(7)Spin(7), in terms of the warp factor and a one-form LL on XX (not necessarily nowhere-vanishing) constructed as a ξ\xi bilinear; in addition, LL is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7)Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7)Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7)Spin(7) holonomy.Comment: 24 pages. V2: introduction slightly extended, typos corrected in the text, references added. V3: the role of Spin(7) clarified, erroneous statements thereof corrected. New material on generalized Spin(7) structures in nine dimensions. To appear in JHE

    Negative Energy Density in Calabi-Yau Compactifications

    Full text link
    We show that a large class of supersymmetric compactifications, including all simply connected Calabi-Yau and G_2 manifolds, have classical configurations with negative energy density as seen from four dimensions. In fact, the energy density can be arbitrarily negative -- it is unbounded from below. Nevertheless, positive energy theorems show that the total ADM energy remains positive. Physical consequences of the negative energy density include new thermal instabilities, and possible violations of cosmic censorship.Comment: 25 pages, v2: few clarifying comments and reference adde

    De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter

    Full text link
    When de Sitter first introduced his celebrated spacetime, he claimed, following Schwarzschild, that its spatial sections have the topology of the real projective space RP^3 (that is, the topology of the group manifold SO(3)) rather than, as is almost universally assumed today, that of the sphere S^3. (In modern language, Schwarzschild was disturbed by the non-local correlations enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not have been accepted as such by de Sitter. There is no real basis within classical cosmology for preferring S^3 to RP^3, but the general feeling appears to be that the distinction is in any case of little importance. We wish to argue that, in the light of current concerns about the nature of de Sitter space, this is a mistake. In particular, we argue that the difference between "dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of understanding horizon entropies. In the approach to de Sitter entropy via Schwarzschild-de Sitter spacetime, we find that the apparently trivial difference between RP^3 and S^3 actually leads to very different perspectives on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers finally fixed, JHEP versio

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
    corecore