65 research outputs found

    String Tensions and Three Dimensional Confining Gauge Theories

    Full text link
    In the context of gauge/gravity duality, we try to understand better the proposed duality between the fractional D2-brane supergravity solutions of (Nucl. Phys. B 606 (2001) 18, hep-th/0101096) and a confining 2+1 dimensional gauge theory. Based on the similarities between this fractional D2-brane solution and D3-brane supergravity solutions with more firmly established gauge theory duals, we conjecture that a confining q-string in the 2+1 dimensional gauge theory is dual to a wrapped D4-brane. In particular, the D4-brane looks like a string in the gauge theory directions but wraps a S**3 in S**4 in the transverse geometry. For one of the supergravity solutions, we find a near quadratic scaling law for the tension: T∌q(N−q)T \sim q (N-q). Based on the tension, we conjecture that the gauge theory dual is SU(N) far in the infrared. We also conjecture that a quadratic or near quadratic scaling is a generic feature of confining 2+1 dimensional SU(N) gauge theories.Comment: 23 pages, 2 figure

    New Complete Non-compact Spin(7) Manifolds

    Get PDF
    We construct new explicit metrics on complete non-compact Riemannian 8-manifolds with holonomy Spin(7). One manifold, which we denote by A_8, is topologically R^8 and another, which we denote by B_8, is the bundle of chiral spinors over S4S^4. Unlike the previously-known complete non-compact metric of Spin(7) holonomy, which was also defined on the bundle of chiral spinors over S^4, our new metrics are asymptotically locally conical (ALC): near infinity they approach a circle bundle with fibres of constant length over a cone whose base is the squashed Einstein metric on CP^3. We construct the covariantly-constant spinor and calibrating 4-form. We also obtain an L^2-normalisable harmonic 4-form for the A_8 manifold, and two such 4-forms (of opposite dualities) for the B_8 manifold. We use the metrics to construct new supersymmetric brane solutions in M-theory and string theory. In particular, we construct resolved fractional M2-branes involving the use of the L^2 harmonic 4-forms, and show that for each manifold there is a supersymmetric example. An intriguing feature of the new A_8 and B_8 Spin(7) metrics is that they are actually the same local solution, with the two different complete manifolds corresponding to taking the radial coordinate to be either positive or negative. We make a comparison with the Taub-NUT and Taub-BOLT metrics, which by contrast do not have special holonomy. In an appendix we construct the general solution of our first-order equations for Spin(7) holonomy, and obtain further regular metrics that are complete on manifolds B^+_8 and B^-_8 similar to B_8.Comment: Latex, 29 pages. Appendix obtaining general solution of first-order equations and additional complete Spin(7) manifolds adde

    Purifying and Reversible Physical Processes

    Get PDF
    Starting from the observation that reversible processes cannot increase the purity of any input state, we study deterministic physical processes, which map a set of states to a set of pure states. Such a process must map any state to the same pure output, if purity is demanded for the input set of all states. But otherwise, when the input set is restricted, it is possible to find non-trivial purifying processes. For the most restricted case of only two input states, we completely characterize the output of any such map. We furthermore consider maps, which combine the property of purity and reversibility on a set of states, and we derive necessary and sufficient conditions on sets, which permit such processes.Comment: 5 pages, no figures, v2: only minimal change

    Supersymmetric Non-singular Fractional D2-branes and NS-NS 2-branes

    Get PDF
    We obtain regular deformed D2-brane solutions with fractional D2-branes arising as wrapped D4-branes. The space transverse to the D2-brane is a complete Ricci-flat 7-manifold of G_2 holonomy, which is asymptotically conical with principal orbits that are topologically CP^3 or the flag manifold SU(3)/(U(1) x U(1)). We obtain the solution by first constructing an L^2 normalisable harmonic 3-form. We also review a previously-obtained regular deformed D2-brane whose transverse space is a different 7-manifold of G_2 holonomy, with principal orbits that are topologically S^3 x S^3. This describes D2-branes with fractional NS-NS 2-branes coming from the wrapping of 5-branes, which is supported by a non-normalisable harmonic 3-form on the 7-manifold. We prove that both types of solutions are supersymmetric, preserving 1/16 of the maximal supersymmetry and hence that they are dual to {\cal N}=1 three-dimensional gauge theories. In each case, the spectrum for minimally-coupled scalars is discrete, indicating confinement in the infrared region of the dual gauge theories. We examine resolutions of other branes, and obtain necessary conditions for their regularity. The resolution of many of these seems to lie beyond supergravity. In the process of studying these questions, we construct new explicit examples of complete Ricci-flat metrics.Comment: Latex, 30 page

    Families of IIB duals for nonrelativistic CFTs

    Full text link
    We show that the recent string theory embedding of a spacetime with nonrelativistic Schrodinger symmetry can be generalised to a twenty one dimensional family of solutions with that symmetry. Our solutions include IIB backgrounds with no three form flux turned on, and arise as near horizon limits of branewave spacetimes. We show that there is a hypersurface in the space of these theories where an instability appears in the gravitational description, indicating a phase transition in the nonrelativistic field theory dual. We also present simple embeddings of duals for nonrelativistic critical points where the dynamical critical exponent can take many values z \neq 2.Comment: 1+25 pages. References adde

    Axions In String Theory

    Get PDF
    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter F_a is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that F_a is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for F_a to be well below the GUT scale.Comment: 62 pages, v2; references, acknowledgements and minor corrections adde

    Warped AdS_3 Black Holes

    Get PDF
    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -\ell^{-2} and positive Newton constant G admits an AdS_3 vacuum solution for any value of the graviton mass \mu. These are all known to be perturbatively unstable except at the recently explored chiral point \mu\ell=1. However we show herein that for every value of \mu\ell< 3 there are two other (potentially stable) vacuum solutions given by SL(2,R)x U(1)-invariant warped AdS_3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at \mu\ell=3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For \mu\ell>3, there are known warped black hole solutions which are asymptotic to warped AdS_3. We show that these black holes are discrete quotients of warped AdS_3 just as BTZ black holes are discrete quotients of ordinary AdS_3. Moreover new solutions of this type, relevant to any theory with warped AdS_3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for \mu\ell>3, the warped AdS_3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R={15(\mu\ell)^2+81\over G\mu((\mu\ell)^2+27)} and c_L={12 \mu\ell^2\over G((\mu\ell)^2+27)}.Comment: 29 page
    • 

    corecore