276 research outputs found

    The glassy response of solid He-4 to torsional oscillations

    Full text link
    We calculated the glassy response of solid He-4 to torsional oscillations assuming a phenomenological glass model. Making only a few assumptions about the distribution of glassy relaxation times in a small subsystem of otherwise rigid solid He-4, we can account for the magnitude of the observed period shift and concomitant dissipation peak in several torsion oscillator experiments. The implications of the glass model for solid He-4 are threefold: (1) The dynamics of solid He-4 is governed by glassy relaxation processes. (2) The distribution of relaxation times varies significantly between different torsion oscillator experiments. (3) The mechanical response of a torsion oscillator does not require a supersolid component to account for the observed anomaly at low temperatures, though we cannot rule out its existence.Comment: 9 pages, 4 figures, presented at QFS200

    Two-body correlations and the superfluid fraction for nonuniform systems

    Full text link
    We extend the one-body phase function upper bound on the superfluid fraction in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.Comment: 13 page

    Zero-point vacancies in quantum solids

    Full text link
    A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known that both JWF and SWF describe a quantum solid with also a finite equilibrium concentration of vacancies x_v. We outline a route for estimating x_v by exploiting the existing formal equivalence between the absolute square of the ground state wave function and the Boltzmann weight of a classical solid. We compute x_v for the quantum solids described by JWF and SWF employing very accurate numerical techniques. For JWF we find a very small value for the zero point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently gives the best variational description of solid 4He, we find the significantly larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also study two and three vacancies. We find that there is a strong short range attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy

    Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal

    Full text link
    Defects are believed to play a fundamental role in the supersolid state of 4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at zero temperature of the properties of solid 4He in presence of many vacancies, up to 30 in two dimensions (2D). In all studied cases the crystalline order is stable at least as long as the concentration of vacancies is below 2.5%. In the 2D system for a small number, n_v, of vacancies such defects can be identified in the crystalline lattice and are strongly correlated with an attractive interaction. On the contrary when n_v~10 vacancies in the relaxed system disappear and in their place one finds dislocations and a revival of the Bose-Einstein condensation. Thus, should zero-point motion defects be present in solid 4He, such defects would be dislocations and not vacancies, at least in 2D. In order to avoid using periodic boundary conditions we have studied the exact ground state of solid 4He confined in a circular region by an external potential. We find that defects tend to be localized in an interfacial region of width of about 15 A. Our computation allows to put as upper bound limit to zero--point defects the concentration 0.003 in the 2D system close to melting density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special Issue on Supersolid

    Glide and Superclimb of Dislocations in Solid 4^4He

    Full text link
    Glide and climb of quantum dislocations under finite external stress, variation of chemical potential and bias (geometrical slanting) in Peierls potential are studied by Monte Carlo simulations of the effective string model. We treat on unified ground quantum effects at finite temperatures TT. Climb at low TT is assisted by superflow along dislocation core -- {\it superclimb}. Above some critical stress avalanche-type creation of kinks is found. It is characterized by hysteretic behavior at low TT. At finite biases gliding dislocation remains rough even at lowest TT -- the behavior opposite to non-slanted dislocations. In contrast to glide, superclimb is characterized by quantum smooth state at low temperatures even for finite bias. In some intermediate TT-range giant values of the compressibility as well as non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6 figure

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Meson screening masses from lattice QCD with two light and the strange quark

    Full text link
    We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq 4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3Tc (Tc being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2 \pi T from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses do not become degenerate even for a temperature as high as 4Tc. Using these mesonic spatial correlation functions we have also investigated the restoration of chiral symmetry and the effective restoration of the axial symmetry. We have found that the vector and the axial-vector screening correlators become degenerate, indicating chiral symmetry restoration, at a temperature which is consistent with the QCD transition temperature obtained in previous studies. On the other hand, the pseudo-scalar and the scalar screening correlators become degenerate only at temperatures larger than 1.3Tc, indicating that the effective restoration of the axial symmetry takes place at a temperature larger than the QCD transition temperature.Comment: Published versio

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
    corecore