46 research outputs found

    Formability of high strength aluminium sheet

    Get PDF
    An initial review of the subject emphasises the need for improved fuel efficiency in vehicles and the possible role of aluminium in reducing weight. The problems of formability generally in manufacture and of aluminium in particular are discussed in the light of published data. A range of thirteen commercially available sheet aluminium alloys have been compared with respect to mechanical properties as these affect forming processes and behaviour in service. Four alloys were selected for detailed comparison. The formability and strength of these were investigated in terms of underlying mechanisms of deformation as well as the microstructural characteristics of the alloys including texture, particle dispersion, grain size and composition. In overall terms, good combinations of strength and ductility are achievable with alloys of the 2xxx and 6xxx series. Some specific alloys are notably better than others. The strength of formed components is affected by paint baking in the final stages of manufacture. Generally, alloys of the 6xxx family are strengthened while 2xxx and 5xxx become weaker. Some anomalous behaviour exists, however. Work hardening of these alloys appears to show rather abrupt decreases over certain strain ranges which is probably responsible for the relatively low strains at which both diffuse and local necking occur. Using data obtained from extended range tensile tests, the strain distribution in more complex shapes can be successfully modelled using finite element methods.Sheet failure during forming occurs by abrupt shear fracture in many instances. This condition is favoured by states of biaxial tension, surface defects in the form of fine scratches and certain types of crystallographic texture. The measured limit strains of the materials can be understood on the basis of attainment of a critical shear stress for fracture

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy

    Middle to late Pleistocene palaeoecological reconstructions and palaeotemperature estimates for cold/cool stage deposits at Whittlesey, eastern England

    Get PDF
    Fossiliferous beds in a complex sequence of late Middle to Late Pleistocene deposits at Whittlesey, eastern England, provided a rare opportunity for a multidisciplinary study of the palaeoecology of cool/cold stage deposits from different glacial stages. The fossiliferous sediments investigated form part of the River Nene 1st Terrace. Three of the four fossil assemblages investigated pre-date the last interglacial stage (Ipswichian/Eemian/marine oxygen isotope stage (MIS) 5e), whereas the other dates to part of the MIS 3 interstadial complex (Middle Devensian/Weichselian). Pollen, plant macrofossil, molluscan, coleopteran, ostracod, foraminifera and vertebrate data are available to a greater or lesser extent for each cool/cold stage assemblage, and they broadly present the same ecological picture for each one: a continuum from low-energy permanent to non-permanent aquatic habitats through marshland with associated waterside taxa, together with flood influxes of fluvial, riparian and ruderal taxa. Although each fossil assemblage records cool/cold climatic conditions, to a greater or lesser extent, these conditions are more apparent in the insect and ostracod faunas. In comparison with results published for the Last Glacial Maximum (LGM) stadial in The Netherlands, palaeotemperature estimates based on ranges of mutual agreement between independent coleopteran and ostracod methods for the three pre-Ipswichian/Eemian assemblages indicate minimum mean July air temperatures that are from +1° to +3 °C warmer, but January values that embrace the −8 °C estimate for the LGM. There is, however, a disparity between the coleopteran and ostracod palaeotemperature estimates for the Middle Devensian/Weichselian fossil assemblage, which are based on two different sample stratigraphic levels; the lower, coleopteran assemblage is indicative of very cool, continental climates, whereas the stratigraphically slightly higher ostracod assemblage suggests a climatic amelioration. Lack of numerical age-estimates prevents a robust stratigraphical interpretation, but the youngest pre-Ipswichian/Eemian fossil assemblage could date to the MIS 7–6 transition, at a time when cooling possibly preceded glacially driven sea-level fall. It is apparent from the rich coleopteran data that some continental cold-indicator taxa also appeared in pre-Ipswichian/Eemian cold stages and therefore assignment of continental cold-indicator taxa to particular Devensian/Weichselian intervals should be undertaken with care

    Mutational processes molding the genomes of 21 breast cancers

    Get PDF
    All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed

    Transcriptional Regulation of the Stem Cell Leukemia Gene (SCL) — Comparative Analysis of Five Vertebrate SCL Loci

    No full text
    The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hematopoiesis and vasculogenesis and a pattern of expression that is highly conserved between mammals and zebrafish. Here we report the isolation and characterization of the zebrafish SCL locus together with the identification of three neighboring genes, IER5, MAP17, and MUPP1. This region spans 68 kb and comprises the longest zebrafish genomic sequence currently available for comparison with mammalian, chicken, and pufferfish sequences. Our data show conserved synteny between zebrafish and mammalian SCL and MAP17 loci, thus suggesting the likely genomic domain necessary for the conserved pattern of SCL expression. Long-range comparative sequence analysis/phylogenetic footprinting was used to identify noncoding conserved sequences representing candidate transcriptional regulatory elements. The SCL promoter/enhancer, exon 1, and the poly(A) region were highly conserved, but no homology to other known mouse SCL enhancers was detected in the zebrafish sequence. A combined homology/structure analysis of the poly(A) region predicted consistent structural features, suggesting a conserved functional role in mRNA regulation. Analysis of the SCL promoter/enhancer revealed five motifs, which were conserved from zebrafish to mammals, and each of which is essential for the appropriate pattern or level of SCL transcription. [The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: N. Tanese.
    corecore