14 research outputs found

    Aspects of electrostatics in a weak gravitational field

    Full text link
    Several features of electrostatics of point charged particles in a weak, homogeneous, gravitational field are discussed using the Rindler metric to model the gravitational field. Some previously known results are obtained by simpler and more transparent procedures and are interpreted in an intuitive manner. Specifically: (i) We show that the electrostatic potential of a charge at rest in the Rindler frame is expressible as A_0=(q/l) where l is the affine parameter distance along the null geodesic from the charge to the field point. (ii) We obtain the sum of the electrostatic forces exerted by one charge on another in the Rindler frame and discuss its interpretation. (iii) We show how a purely electrostatic term in the Rindler frame appears as a radiation term in the inertial frame. (In part, this arises because charges at rest in a weak gravitational field possess additional weight due to their electrostatic energy. This weight is proportional to the acceleration and falls inversely with distance -- which are the usual characteristics of a radiation field.) (iv) We also interpret the origin of the radiation reaction term by extending our approach to include a slowly varying acceleration. Many of these results might have possible extensions for the case of electrostatics in an arbitrary static geometry. [Abridged Abstract]Comment: 26 pages; accepted for publication in Gen.Rel.Gra

    EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events

    Get PDF
    We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale

    CO2-Bilanz und Vegetationsänderungen

    No full text

    Low Frequency Scattering by Rectangular Dielectric Particles

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/20941/2/rl0629.0001.001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/20941/1/rl0629.0001.001.tx
    corecore