979 research outputs found
A Generating Function for all Semi-Magic Squares and the Volume of the Birkhoff Polytope
We present a multivariate generating function for all n x n nonnegative
integral matrices with all row and column sums equal to a positive integer t,
the so called semi-magic squares. As a consequence we obtain formulas for all
coefficients of the Ehrhart polynomial of the polytope B_n of n x n
doubly-stochastic matrices, also known as the Birkhoff polytope. In particular
we derive formulas for the volumes of B_n and any of its faces.Comment: 24 pages, 1 figure. To appear in Journal of Algebraic Combinatoric
Mixed configuration-interaction and many-body perturbation theory calculations of energies and oscillator strengths of J=1 odd states of neon
Ab-initio theory is developed for energies of J=1 particle-hole states of
neutral neon and for oscillator strengths of transitions from such states to
the J=0 ground state. Hole energies of low-Z neonlike ions are evaluated.Comment: 5 pages, 1 figure, 4 table
The confinement effect on the activity of Au NPs in polyol oxidation
We demonstrate a confinement effect where gold nanoparticles trapped within N-functionalized carbon nanofibers (N-CNFs) are more active for polyol oxidation and promote selectivity towards di-acid products, whereas AuNPs trapped on the surface produce as a major by-product the one derived from C-C cleavage. The behaviour of NPs confined inside the N-CNF channels can be attributed to a different, possibly multiple, coordination of glycerol on the active site
Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder
The effect of a weak three-dimensional (3d) isotropic laser speckle disorder
on various thermodynamic properties of a dilute Bose gas is considered at zero
temperature. First, we summarize the derivation of the autocorrelation function
of laser speckles in 1d and 2d following the seminal work of Goodman. The goal
of this discussion is to show that a Gaussian approximation of this function,
proposed in some recent papers, is inconsistent with the general background of
laser speckle theory. Then we propose a possible experimental realization for
an isotropic 3d laser speckle potential and derive its corresponding
autocorrelation function. Using a Fourier transform of that function, we
calculate both condensate depletion and sound velocity of a Bose-Einstein
condensate as disorder ensemble averages of such a weak laser speckle potential
within a perturbative solution of the Gross-Pitaevskii equation. By doing so,
we reproduce the expression of the normalfluid density obtained earlier within
the treatment of Landau. This physically transparent derivation shows that
condensate particles, which are scattered by disorder, form a gas of
quasiparticles which is responsible for the normalfluid component
Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 LaCuO and LaSrCuO
This paper reports muon spin relaxation (MuSR) measurements of two single
crystals of the title high-Tc cuprate systems where static incommensurate
magnetism and superconductivity coexist. By zero-field MuSR measurements and
subsequent analyses with simulations, we show that (1) the maximum ordered Cu
moment size (0.36 Bohr magneton) and local spin structure are identical to
those in prototypical stripe spin systems with the 1/8 hole concentration; (2)
the static magnetism is confined to less than a half of the volume of the
sample, and (3) regions with static magnetism form nano-scale islands with the
size comparable to the in-plane superconducting coherence length. By
transverse-field MuSR measurements, we show that Tc of these systems is related
to the superfluid density, in the same way as observed in cuprate systems
without static magnetism. We discuss a heuristic model involving percolation of
these nanoscale islands with static magnetism as a possible picture to
reconcile heterogeneity found by the present MuSR study and long-range spin
correlations found by neutron scattering.Comment: 19 pages, 15 figures, submitted to Phys. Rev. B. E-mail:
[email protected]
Illuminating Host-Parasite Interaction at the Cellular and Subcellular Levels with Infrared Microspectroscopy
Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection
Bound Chains of Tilted Dipoles in Layered Systems
Ultracold polar molecules in multilayered systems have been experimentally
realized very recently. While experiments study these systems almost
exclusively through their chemical reactivity, the outlook for creating and
manipulating exotic few- and many-body physics in dipolar systems is
fascinating. Here we concentrate on few-body states in a multilayered setup. We
exploit the geometry of the interlayer potential to calculate the two- and
three-body chains with one molecule in each layer. The focus is on dipoles that
are aligned at some angle with respect to the layer planes by means of an
external eletric field. The binding energy and the spatial structure of the
bound states are studied in several different ways using analytical approaches.
The results are compared to stochastic variational calculations and very good
agreement is found. We conclude that approximations based on harmonic
oscillator potentials are accurate even for tilted dipoles when the geometry of
the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on
Critical Stability, revised versio
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Dimers, Effective Interactions, and Pauli Blocking Effects in a Bilayer of Cold Fermionic Polar Molecules
We consider a bilayer setup with two parallel planes of cold fermionic polar
molecules when the dipole moments are oriented perpendicular to the planes. The
binding energy of two-body states with one polar molecule in each layer is
determined and compared to various analytic approximation schemes in both
coordinate- and momentum-space. The effective interaction of two bound dimers
is obtained by integrating out the internal dimer bound state wave function and
its robustness under analytical approximations is studied. Furthermore, we
consider the effect of the background of other fermions on the dimer state
through Pauli blocking, and discuss implications for the zero-temperature
many-body phase diagram of this experimentally realizable system.Comment: 18 pages, 10 figures, accepted versio
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
- …