408 research outputs found
Neutrino oscillations in magnetically driven supernova explosions
We investigate neutrino oscillations from core-collapse supernovae that
produce magnetohydrodynamic (MHD) explosions. By calculating numerically the
flavor conversion of neutrinos in the highly non-spherical envelope, we study
how the explosion anisotropy has impacts on the emergent neutrino spectra
through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted
mass hierarchy with a relatively large theta_(13), we show that survival
probabilities of electron type neutrinos and antineutrinos seen from the
rotational axis of the MHD supernovae (i.e., polar direction), can be
significantly different from those along the equatorial direction. The event
numbers of electron type antineutrinos observed from the polar direction are
predicted to show steepest decrease, reflecting the passage of the
magneto-driven shock to the so-called high-resonance regions. Furthermore we
point out that such a shock effect, depending on the original neutrino spectra,
appears also for the low-resonance regions, which leads to a noticeable
decrease in the electron type neutrino signals. This reflects a unique nature
of the magnetic explosion featuring a very early shock-arrival to the resonance
regions, which is in sharp contrast to the neutrino-driven delayed supernova
models. Our results suggest that the two features in the electron type
antineutrinos and neutrinos signals, if visible to the Super-Kamiokande for a
Galactic supernova, could mark an observational signature of the magnetically
driven explosions, presumably linked to the formation of magnetars and/or
long-duration gamma-ray bursts.Comment: 25 pages, 21 figures, JCAP in pres
Nonlinear time-series analysis of Hyperion's lightcurves
Hyperion is a satellite of Saturn that was predicted to remain in a chaotic
rotational state. This was confirmed to some extent by Voyager 2 and Cassini
series of images and some ground-based photometric observations. The aim of
this aticle is to explore conditions for potential observations to meet in
order to estimate a maximal Lyapunov Exponent (mLE), which being positive is an
indicator of chaos and allows to characterise it quantitatively. Lightcurves
existing in literature as well as numerical simulations are examined using
standard tools of theory of chaos. It is found that existing datasets are too
short and undersampled to detect a positive mLE, although its presence is not
rejected. Analysis of simulated lightcurves leads to an assertion that
observations from one site should be performed over a year-long period to
detect a positive mLE, if present, in a reliable way. Another approach would be
to use 2---3 telescopes spread over the world to have observations distributed
more uniformly. This may be achieved without disrupting other observational
projects being conducted. The necessity of time-series to be stationary is
highly stressed.Comment: 34 pages, 12 figures, 4 tables; v2 after referee report; matches the
version accepted in Astrophysics and Space Scienc
General Stability Analysis of Synchronized Dynamics in Coupled Systems
We consider the stability of synchronized states (including equilibrium
point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical
systems (maps or ordinary differential equations). We develop a general
approach, based on the master stability function and Gershgorin disc theory, to
yield constraints on the coupling strengths to ensure the stability of
synchronized dynamics. Systems with specific coupling schemes are used as
examples to illustrate our general method.Comment: 8 pages, 1 figur
Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of
We discuss possible magnetic structures in UPt based on our analysis of
elastic neutron-scattering experiments in high magnetic fields at temperatures
. The existing experimental data can be explained by a single-{\bf q}
antiferromagnetic structure with three independent domains. For modest in-plane
spin-orbit interactions, the Zeeman coupling between the antiferromagnetic
order parameter and the magnetic field induces a rotation of the magnetic
moments, but not an adjustment of the propagation vector of the magnetic order.
A triple-{\bf q} magnetic structure is also consistent with neutron
experiments, but in general leads to a non-uniform magnetization in the
crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV
We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy s=8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the fewz program. The results are also compared to the commonly used leading-order MadGraph and next-to-leading-order powheg generators. © 2015 CERN for the benefit of the CMS Collaboration
- …