46 research outputs found
Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops
We investigate the solar flare of 20 October 2002. The flare was accompanied
by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray
emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of
the HXR time profiles in different energy channels made with the Lomb
periodogram indicates two statistically significant time periods of about 16
and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR
emission in the impulsive phase of the flare. The 16-second QPP were more
pronounced in the thermal HXR emission and were observed both in the impulsive
and in the decay phases of the flare. Imaging analysis of the flare region, the
determined time periods of the QPP and the estimated physical parameters of
magnetic loops in the flare region allow us to interpret the observations as
follows. 1) In the impulsive phase energy was released and electrons were
accelerated by successive acts with the average time period of about 36 seconds
in different parts of two spatially separated, but interacting loop systems of
the flare region. 2) The 36-second periodicity of energy release could be
caused by the action of fast MHD oscillations in the loops connecting these
flaring sites. 3) During the first explosive acts of energy release the MHD
oscillations (most probably the sausage mode) with time period of 16 seconds
were excited in one system of the flare loops. 4) These oscillations were
maintained by the subsequent explosive acts of energy release in the impulsive
phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure
Active Galaxies in the UV
In this article we present different aspects of AGN studies demonstrating the
importance of the UV spectral range. Most important diagnostic lines for
studying the general physical conditions as well as the metalicities in the
central broad line region in AGN are emitted in the UV. The UV/FUV continuum in
AGN excites not only the emission lines in the immediate surrounding but it is
responsible for the ionization of the intergalactic medium in the early stages
of the universe. Variability studies of the emission line profiles of AGN in
the UV give us information on the structure and kinematics of the immediate
surrounding of the central supermassive black hole as well as on its mass
itself.Comment: 29 pages, 13 figures, Ap&SS in pres
Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research
The article of record may be found at http://dx.doi.org/10.1121/1.4937607Analytical and numerical scattering models with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m2) was calculated as a function of insonifying frequency (f 1⁄4 12 to 400 kHz) and angle of incidence...This work was supported by the NOAA Fisheries Advanced Sampling Technologies Working Group, the Office of Naval Research, and the National Oceanic Partnership Progra