46 research outputs found

    Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops

    Full text link
    We investigate the solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram indicates two statistically significant time periods of about 16 and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16-second QPP were more pronounced in the thermal HXR emission and were observed both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP and the estimated physical parameters of magnetic loops in the flare region allow us to interpret the observations as follows. 1) In the impulsive phase energy was released and electrons were accelerated by successive acts with the average time period of about 36 seconds in different parts of two spatially separated, but interacting loop systems of the flare region. 2) The 36-second periodicity of energy release could be caused by the action of fast MHD oscillations in the loops connecting these flaring sites. 3) During the first explosive acts of energy release the MHD oscillations (most probably the sausage mode) with time period of 16 seconds were excited in one system of the flare loops. 4) These oscillations were maintained by the subsequent explosive acts of energy release in the impulsive phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure

    Active Galaxies in the UV

    Full text link
    In this article we present different aspects of AGN studies demonstrating the importance of the UV spectral range. Most important diagnostic lines for studying the general physical conditions as well as the metalicities in the central broad line region in AGN are emitted in the UV. The UV/FUV continuum in AGN excites not only the emission lines in the immediate surrounding but it is responsible for the ionization of the intergalactic medium in the early stages of the universe. Variability studies of the emission line profiles of AGN in the UV give us information on the structure and kinematics of the immediate surrounding of the central supermassive black hole as well as on its mass itself.Comment: 29 pages, 13 figures, Ap&SS in pres

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Animal helminths in human archaeological remains: a review of zoonoses in the past

    Full text link

    Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research

    Get PDF
    The article of record may be found at http://dx.doi.org/10.1121/1.4937607Analytical and numerical scattering models with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m2) was calculated as a function of insonifying frequency (f 1⁄4 12 to 400 kHz) and angle of incidence...This work was supported by the NOAA Fisheries Advanced Sampling Technologies Working Group, the Office of Naval Research, and the National Oceanic Partnership Progra
    corecore