14 research outputs found

    Spiral model, jamming percolation and glass-jamming transitions

    Full text link
    The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2

    Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study

    Full text link
    We study single-chain motion in semidilute solutions of polymers of length N = 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm. The crossover length of the transition from Zimm (short lengths and times) to Rouse dynamics (larger scales) is proportional to the static screening length. The crossover time is the corresponding Zimm time. Our data indicate Zimm behavior at large lengths but short times. There is no hydrodynamic screening until the chains feel constraints, after which they resist the flow: "Incomplete screening" occurs in the time domain.Comment: 3 figure

    'A plant needs ants like a dog needs fleas:' Myrmelachista schumanni ants gall many tree species to create housing

    No full text
    Hundreds of tropical plant species house ant colonies in specialized chambers called domatia. When, in 1873, Richard Spruce likened plant-ants to fleas and asserted that domatia are ant-created galls, he incited a debate that lasted almost a century. Although we now know that domatia are not galls and that most ant-plant interactions are mutualisms and not parasitisms, we revisit Spruce`s suggestion that ants can gall in light of our observations of the plant-ant Myrmelachista schumanni, which creates clearings in the Amazonian rain forest called ""supay-chakras,"" or ""devil`s gardens."" We observed swollen scars on the trunks of nonmyrmecophytic canopy trees surrounding supay-chakras, and within these swellings, we found networks of cavities inhabited by M. schumanni. Here, we summarize the evidence supporting the hypothesis that M. schumanni ants make these galls, and we hypothesize that the adaptive benefit of galling is to increase the amount of nesting space available to M. schumanni colonies.Yunnan governmentYunnan government[20080A001]Chinese Academy of Sciences (CAS)Chinese Academy of Sciences[0902281081]A.L. Green FundA.L. Green FundWilliam F. Milton FundWilliam F. Milton FundNational Geographic SocietyNational Geographic SocietyLeverhulme TrustLeverhulme TrustSociety of Fellows at Harvard UniversitySociety of Fellows at Harvard UniversityE. G. NevesE. G. NevesFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore