88 research outputs found

    Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle

    Get PDF
    AbstractBoth insulin and muscle contraction stimulate glucose transport activity. However, contraction stimulation does not involve the insulin signalling intermediate phosphatidylinositol 3-kinase (PI 3-kinase). Protein kinase B (PKB) has recently been identified as a direct downstream target of PI 3-kinase in the insulin signalling pathway. We have examined here whether the two stimuli share PKB as a convergent step in separate signalling pathways. Insulin stimulates both glucose transport, GLUT4 cell-surface content and PKB activity (by 4–6-fold above basal) in a wortmannin-sensitive manner in in vitro incubated rat soleus muscles. By contrast, muscle contraction, which stimulates glucose transport and the cell surface content of GLUT4 by 3-fold above basal levels, had no effect on PKB activity. These data demonstrate that PKB is not a mediator of contraction-induced glucose transport and GLUT4 translocation

    A burst with double radio spectrum observed up to 212 GHz

    Get PDF
    We study a solar flare that occurred on September 10, 2002, in active region NOAA 10105 starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in H\alpha. Solar Submillimeter Telescope observations, in addition to microwave data give us a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-rays observations and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imaging data are used to identify the locations of X-ray sources at different energies and to determine the X-ray spectrum, while ultra violet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio-frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources and 212 GHz data, used to estimate the radio source position, show a single compact source displaced by 25" from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and combine this analysis with that of hard X-rays to understand the dynamics of the particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft-hard-soft behaviour.Comment: Submitted to Solar Physics, 20 pages, 8 fugure

    Observations of Low Frequency Solar Radio Bursts from the Rosse Solar-Terrestrial Observatory

    Full text link
    The Rosse Solar-Terrestrial Observatory (RSTO; www.rosseobservatory.ie) was established at Birr Castle, Co. Offaly, Ireland (53 05'38.9", 7 55'12.7") in 2010 to study solar radio bursts and the response of the Earth's ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range 10-870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range 10-400 MHz are obtained with 4 sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of a sample of Type II, III and IV radio bursts. In particular, we describe fine-scale structure observed in Type II bursts, including band splitting and rapidly varying herringbone features

    N=1 Supergravity Chaotic Inflation in the Braneworld Scenario

    Full text link
    We study a N=1 Supergravity chaotic inflationary model, in the context of the braneworld scenario. It is shown that successful inflation and reheating consistent with phenomenological constraints can be achieved via the new terms in the Friedmann equation arising from brane physics. Interestingly, the model satisfies observational bounds with sub-Planckian field values, implying that chaotic inflation on the brane is free from the well known difficulties associated with the presence of higher order non-renormalizable terms in the superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim 1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Low-energy cutoffs in electron spectra of solar flares: statistical survey

    Full text link
    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -- May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularised inversion technique, we determine the mean electron flux distribution from count spectra of a selection of events with flat photon spectra in the 15--20 keV energy range. Such spectral behaviour is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range, e.g. a low-energy cutoff in the mean electron spectra of non-themal particles. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of 10--20 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction was applied, all low-energy cutoffs in the mean electron spectrum were removed and hence the low energy cutoffs in the mean electron spectrum of solar flares above \sim12 keV cannot be viewed as real features in the electron spectrum. If low-energy cutoffs exist in the mean electron spectra, the energy of low energy cutoffs should be less than \sim12 keV.Comment: 9 pages, 5 figures, submitted to Solar Physic

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    A Statistical Survey of Hard X-ray Spectral Characteristics of Solar Flares with Two Footpoints

    Full text link
    Using RHESSI data, we have analyzed some 172 hard X-ray peaks during 53 solar flares which exhibited a double-footpoint structure. Fitting both footpoints with power-laws, we find that spectral index differences range mostly between 0 to 0.6, and only rarely go beyond. Asymmetries between footpoints were not observed to be significantly dependent on their mean heliographic position, their relative position with respect to each other, nor their orientation with respect to the solar equator. Assuming a symmetric acceleration process, it is also clear that differences in footpoint spectral indices and footpoint flux ratios can seldom be attributed to a difference in column densities between the two legs of a coronal loop. Our results corroborate better the magnetic mirror trap scenario. Moreover, footpoint asymmetries are more marked during times of peak HXR flux than when averaging over the whole HXR burst, suggesting that the magnetic configuration evolves during individual HXR bursts. We observed also a linear correlation between the peak 50-keV flux and the peak GOES 1-8A channel flux, and that HXR burst duration seem correlated with loop length.Comment: 20 pages, 13 figures. Published in Solar Physic

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    RHESSI Results -- Time For a Rethink?

    Full text link
    Hard X-rays and gamma-rays are the most direct signatures of energetic electrons and ions in the sun's atmosphere which is optically thin at these energies and their radiation involves no coherent processes. Being collisional they are complementary to gyro-radiation in probing atmospheric density as opposed to magnetic field and the electrons are primarily 10--100 keV in energy, complementing the (>100 keV) electrons likely responsible for microwave bursts. The pioneering results of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) are raising the first new major questions concerning solar energetic particles in many years. Some highlights of these results are discussed -- primarily around RHESSI topics on which the authors have had direct research involvement -- particularly when they are raising the need for re-thinking of entrenched ideas. Results and issues are broadly divided into discoveries in the spatial, temporal and spectral domains, with the main emphasis on flare hard X-rays/fast electrons but touching also on gamma-rays/ions, non-flare emissions, and the relationship to radio bursts.Comment: Proceedings CESRA Workshop 2004: "The High Energy Solar Corona: Waves, Eruptions, Particles", Lecture Notes in Physics, 2006 (accepted
    corecore