12 research outputs found

    Covariant Vortex In Superconducting-Superfluid-Normal Fluid Mixtures with Stiff Equation of State

    Get PDF
    The integrals of motion for a cylindrically symmetric stationary vortex are obtained in a covariant description of a mixture of interacting superconductors, superfluids and normal fluids. The relevant integrated stress-energy coefficients for the vortex with respect to a vortex-free reference state are calculated in the approximation of a ``stiff'', i.e. least compressible, relativistic equation of state for the fluid mixture. As an illustration of the foregoing general results, we discuss their application to some of the well known examples of ``real'' superfluid and superconducting systems that are contained as special cases. These include Landau's two-fluid model, uncharged binary superfluid mixtures, rotating conventional superconductors and the superfluid neutron-proton-electron plasma in the outer core of neutron stars.Comment: 14 pages, uses RevTeX and amssymb, submitte

    Relativistic superfluid models for rotating neutron stars

    Get PDF
    This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.Comment: 42 pages LateX. Contribution to Physics of Neutron Star Interiors, ed. D. Blasche, N.K. Glendenning, A. Sedrakian (ECT workshop, Trento, June 2000

    The forward muon spectrometer of ALICE

    No full text

    ALICE addentum to the Technical Design Report of the time of flight system (TOF)

    No full text
    ALIC
    corecore