649 research outputs found

    Electronic excitations and the tunneling spectra of metallic nanograins

    Full text link
    Tunneling-induced electronic excitations in a metallic nanograin are classified in terms of {\em generations}: subspaces of excitations containing a specific number of electron-hole pairs. This yields a hierarchy of populated excited states of the nanograin that strongly depends on (a) the available electronic energy levels; and (b) the ratio between the electronic relaxation rate within the nano-grain and the bottleneck rate for tunneling transitions. To study the response of the electronic energy level structure of the nanograin to the excitations, and its signature in the tunneling spectrum, we propose a microscopic mean-field theory. Two main features emerge when considering an Al nanograin coated with Al oxide: (i) The electronic energy response fluctuates strongly in the presence of disorder, from level to level and excitation to excitation. Such fluctuations produce a dramatic sample dependence of the tunneling spectra. On the other hand, for excitations that are energetically accessible at low applied bias voltages, the magnitude of the response, reflected in the renormalization of the single-electron energy levels, is smaller than the average spacing between energy levels. (ii) If the tunneling and electronic relaxation time scales are such as to admit a significant non-equilibrium population of the excited nanoparticle states, it should be possible to realize much higher spectral densities of resonances than have been observed to date in such devices. These resonances arise from tunneling into ground-state and excited electronic energy levels, as well as from charge fluctuations present during tunneling.Comment: Submitted to the Physical Review

    Spin-squeezed Ground States in the Bilayer Quantum Hall Ferromagnet

    Full text link
    A "squeezed-vacuum" state considered in quantum optics is shown to be realized in the ground-state wavefunction for the bilayer quantum Hall system at the total Landau level filling of ν=1/m\nu=1/m (m: odd integer). This is derived in the boson approximation, where a particle-hole pair creation across the symmetric-antisymmetric gap, ΔSAS\Delta_{SAS}, is regarded as a boson. In terms of the pseudospin describing the layers, the state is a spin-squeezed state, where the degree of squeezing is controlled by the layer separation and ΔSAS\Delta_{SAS}. An exciton condensation, which amounts to a rotated spin-squeezed state, has a higher energy due to the degraded SU(2) symmetry for ΔSAS0\Delta_{SAS} \neq 0.Comment: 4 pages, revtex, one figure, to appear in PRB Rapid Communicatio

    Tidal torques. A critical review of some techniques

    Full text link
    We point out that the MacDonald formula for body-tide torques is valid only in the zeroth order of e/Q, while its time-average is valid in the first order. So the formula cannot be used for analysis in higher orders of e/Q. This necessitates corrections in the theory of tidal despinning and libration damping. We prove that when the inclination is low and phase lags are linear in frequency, the Kaula series is equivalent to a corrected version of the MacDonald method. The correction to MacDonald's approach would be to set the phase lag of the integral bulge proportional to the instantaneous frequency. The equivalence of descriptions gets violated by a nonlinear frequency-dependence of the lag. We explain that both the MacDonald- and Darwin-torque-based derivations of the popular formula for the tidal despinning rate are limited to low inclinations and to the phase lags being linear in frequency. The Darwin-torque-based derivation, though, is general enough to accommodate both a finite inclination and the actual rheology. Although rheologies with Q scaling as the frequency to a positive power make the torque diverge at a zero frequency, this reveals not the impossible nature of the rheology, but a flaw in mathematics, i.e., a common misassumption that damping merely provides lags to the terms of the Fourier series for the tidal potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the magnitudes of the terms, too, get changed. Reinstating of this detail tames the infinities and rehabilitates the "impossible" scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial text overlap with arXiv:0712.105

    Randomized controlled trial of intravenous antivenom versus placebo for latrodectism: the second redback antivenom evaluation (RAVE- II) study.

    Get PDF
    Objective: Latrodectism is the most important spider envenomation syndrome worldwide. There remains considerable controversy over antivenom treatment. We aimed to investigate whether antivenom resulted in resolution of pain and systemic effects in patients with latrodectism given standardized analgesia. Methods: In a multicentre randomized placebo-controlled trial of redback spider antivenom for latrodectism, 224 patients (>7yr) with a redback spider-bite and severe pain with or without systemic effects were randomized to receive normal saline (placebo) or antivenom, after receiving standardized analgesia. The primary outcome was a clinically significant reduction in pain 2 hours after trial medication compared to baseline. A second primary outcome for the subgroup with systemic features of envenomation was resolution of systemic features at 2 hours. Secondary outcomes were improved pain at 4 and 24 hours, resolution of systemic features at 4 hours, administration of opioid analgesics or unblinded antivenom after 2 hours and adverse reactions. Results: Two hours after treatment, 26/112 patients (23%) from the placebo arm had a clinically significant improvement in pain versus 38/112 (34%) from the antivenom arm (difference in favor of antivenom 10.7%;95%CI:−1.1% to +22.6%;p=0.10). Systemic 2 effects resolved after two hours in 9/41 patients (22%) in the placebo arm and 9/35 (26%) in the antivenom arm (difference 3.8%;95%CI:−15% to +23%;p=0.79). There was no significant difference in any secondary outcome between antivenom and placebo. Acute systemic hypersensitivity reactions occurred in 4/112 (3.6%) patients given antivenom. Conclusions: The addition of antivenom to standardized analgesia in patients with latrodectism, did not significantly improve pain or systemic effects.NHMRC 54522

    Nonmonotonic inelastic tunneling spectra due to surface spin excitations in ferromagnetic junctions

    Get PDF
    The paper addresses inelastic spin-flip tunneling accompanied by surface spin excitations (magnons) in ferromagnetic junctions. The inelastic tunneling current is proportional to the magnon density of states which is energy-independent for the surface waves and, for this reason, cannot account for the bias-voltage dependence of the observed inelastic tunneling spectra. This paper shows that the bias-voltage dependence of the tunneling spectra can arise from the tunneling matrix elements of the electron-magnon interaction. These matrix elements are derived from the Coulomb exchange interaction using the itinerant-electron model of magnon-assisted tunneling. The results for the inelastic tunneling spectra, based on the nonequilibrium Green's function calculations, are presented for both parallel and antiparallel magnetizations in the ferromagnetic leads.Comment: 9 pages, 4 figures, version as publishe

    Giant magnetothermopower of magnon-assisted transport in ferromagnetic tunnel junctions

    Full text link
    We present a theoretical description of the thermopower due to magnon-assisted tunneling in a mesoscopic tunnel junction between two ferromagnetic metals. The thermopower is generated in the course of thermal equilibration between two baths of magnons, mediated by electrons. For a junction between two ferromagnets with antiparallel polarizations, the ability of magnon-assisted tunneling to create thermopower SAPS_{AP} depends on the difference between the size Π,\Pi_{\uparrow, \downarrow} of the majority and minority band Fermi surfaces and it is proportional to a temperature dependent factor (kBT/ωD)3/2(k_{B}T/\omega_{D})^{3/2} where ωD\omega_{D} is the magnon Debye energy. The latter factor reflects the fractional change in the net magnetization of the reservoirs due to thermal magnons at temperature TT (Bloch's T3/2T^{3/2} law). In contrast, the contribution of magnon-assisted tunneling to the thermopower SPS_P of a junction with parallel polarizations is negligible. As the relative polarizations of ferromagnetic layers can be manipulated by an external magnetic field, a large difference ΔS=SAPSPSAP(kB/e)f(Π,Π)(kBT/ωD)3/2\Delta S = S_{AP} - S_P \approx S_{AP} \sim - (k_B/e) f (\Pi_{\uparrow},\Pi_{\downarrow}) (k_BT/\omega_{D})^{3/2} results in a magnetothermopower effect. This magnetothermopower effect becomes giant in the extreme case of a junction between two half-metallic ferromagnets, ΔSkB/e\Delta S \sim - k_B/e.Comment: 9 pages, 4 eps figure

    The Birth of a Hawaiian Fissure Eruption

    Get PDF
    Most basaltic explosive eruptions intensify abruptly, allowing little time to document processes at the start of eruption. One opportunity came with the initiation of activity from fissure 8 (F8) during the 2018 eruption on the lower East Rift Zone of Klauea, Hawaii. F8 erupted in four episodes. We recorded 28 minutes of high-definition video during a 51-minute period, capturing the onset of the second episode on 5 May. From the videos we were able to analyze the following in-flight parameters: frequency and duration of explosions; ejecta heights; pyroclast exit velocities; in-flight total mass and estimated mass eruption rates; and the in-flight total grain size distributions. Videos record a transition from initial pulsating outgassing, via spaced, but increasingly rapid, discrete explosions, to quasi-sustained, unsteady fountaining. This transition accompanied waxing intensity (mass flux) of the F8 eruption. We infer that all activity was driven by a combination of the ascent of a coupled mixture of small bubbles and melt, and the buoyant rise of decoupled gas slugs and/or pockets. The balance between these two types of concurrent flow determined the exact form of the eruptive activity at any point in time, and changes to their relative contributions drove the transition we observed at early F8. Qualitative observations of other Hawaiian fountains at Klauea suggest that this physical model may apply more generally. This study demonstrates the value of in-flight parameters derived from high resolution videos, which offer a rapid and highly time-sensitive alternative to measurements based on sampling of deposits post-eruption

    Tomonaga-Luttinger parameters for quantum wires

    Full text link
    The low-energy properties of a homogeneous one-dimensional electron system are completely specified by two Tomonaga-Luttinger parameters KρK_{\rho} and vσv_{\sigma}. In this paper we discuss microscopic estimates of the values of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic properties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from spin-density-wave to localized in character as the density is lowered. Our results for KρK_{\rho} are in good agreement with weak-coupling perturbative estimates KρpertK_{\rho}^{pert} at high densities, but deviate strongly at low densities, especially when the electron-electron interaction is screened at long distances. Kρpertn1/2K_{\rho}^{pert}\sim n^{1/2} vanishes at small carrier density nn whereas we conjecture that Kρ1/2K_{\rho}\to 1/2 when n0n\to 0, implying that KρK_{\rho} should pass through a minimum at an intermediate density. Observation of such a non-monotonic dependence on particle density would allow to measure the range of the microscopic interaction. In the spin sector we find that the spin velocity decreases with increasing interaction strength or decreasing nn. Strong correlation effects make it difficult to obtain fully consistent estimates of vσv_{\sigma} from Hartree-Fock calculations. We conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit n0n\to 0 where V0V_0 is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include

    Extension to order β23\beta^{23} of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices

    Get PDF
    Using a renormalized linked-cluster-expansion method, we have extended to order β23\beta^{23} the high-temperature series for the susceptibility χ\chi and the second-moment correlation length ξ\xi of the spin-1/2 Ising models on the sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters, such as exponents and amplitude ratios, which characterize the critical behavior of χ\chi and ξ\xi. Our best estimates for the inverse critical temperatures are βcsc=0.221654(1)\beta^{sc}_c=0.221654(1) and βcbcc=0.1573725(6)\beta^{bcc}_c=0.1573725(6). For the susceptibility exponent we get γ=1.2375(6)\gamma=1.2375(6) and for the correlation length exponent we get ν=0.6302(4)\nu=0.6302(4). The ratio of the critical amplitudes of χ\chi above and below the critical temperature is estimated to be C+/C=4.762(8)C_+/C_-=4.762(8). The analogous ratio for ξ\xi is estimated to be f+/f=1.963(8)f_+/f_-=1.963(8). For the correction-to-scaling amplitude ratio we obtain aξ+/aχ+=0.87(6)a^+_{\xi}/a^+_{\chi}=0.87(6).Comment: Misprints corrected, 8 pages, latex, no figure

    A practical drug discovery project at the undergraduate level

    Get PDF
    A practical drug discovery project for third-year undergraduates is described. No previous knowledge of medicinal chemistry is assumed. Initial lecture-workshops cover the basic principles; then students are asked to improve the profile of a weakly potent, poorly soluble PI3K inhibitor (1). Compound array design, molecular modelling and screening data analysis are followed by laboratory work in which each student, as part of a team, attempts to synthesise at least two target compounds. The project benefits from significant industrial support, including lectures, student mentoring and consumables. The aim is to make the learning experience as close as possible to real-life industrial situations. Forty-eight target compounds have been prepared, the best of which (5b, 5j, 6b and 6ap) improved the potency and aqueous solubility of the lead compound (1) by 100-1000 fold and 10-fold, respectively
    corecore