42,729 research outputs found
On Glauber modes in Soft-Collinear Effective Theory
Gluon interactions involving spectator partons in collisions at hadronic
machines are investigated. We find a class of examples in which a mode, called
Glauber gluons, must be introduced to the effective theory for consistency.Comment: 19 pages, three figures. Uses JHEP3.cl
Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates
Light sheet fluorescence microscopy has previously been demonstrated on a commercially available inverted fluorescence microscope frame using the method of oblique plane microscopy (OPM). In this paper, OPM is adapted to allow time-lapse 3-D imaging of 3-D biological cultures in commercially available glass-bottomed 96-well plates using a stage-scanning OPM approach (ssOPM). Time-lapse 3-D imaging of multicellular spheroids expressing a glucose Förster resonance energy transfer (FRET) biosensor is demonstrated in 16 fields of view with image acquisition at 10 minute intervals. As a proof-of-principle, the ssOPM system is also used to acquire a dose response curve with the concentration of glucose in the culture medium being varied across 42 wells of a 96-well plate with the whole acquisition taking 9 min. The 3-D image data enable the FRET ratio to be measured as a function of distance from the surface of the spheroid. Overall, the results demonstrate the capability of the OPM system to measure spatio-temporal changes in FRET ratio in 3-D in multicellular spheroids over time in a multi-well plate format
Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: Functional and therapeutic implications
This article is made available through the Brunel Open Access Publishing Fund. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.CLU (clusterin) is a tumor suppressor gene that we have previously shown to be negatively modulated by the MYCN proto-oncogene, but the mechanism of repression was unclear. Here, we show that MYCN inhibits the expression of CLU by direct interaction with the non-canonical E box sequence CACGCG in the 5′-flanking region. Binding of MYCN to the CLU gene induces bivalent epigenetic marks and recruitment of repressive proteins such as histone deacetylases and Polycomb members. MYCN physically binds in vitro and in vivo to EZH2, a component of the Polycomb repressive complex 2, required to repress CLU. Notably, EZH2 interacts with the Myc box domain 3, a segment of MYC known to be essential for its transforming effects. The expression of CLU can be restored in MYCN-amplified cells by epigenetic drugs with therapeutic results. Importantly, the anticancer effects of the drugs are ablated if CLU expression is blunted by RNA interference. Our study implies that MYC tumorigenesis can be effectively antagonized by epigenetic drugs that interfere with the recruitment of chromatin modifiers at repressive E boxes of tumor suppressor genes such as CLU.SPARKS, The Neuroblastoma Society,
a Wellcome Trust grant (to A. S.), and the Italian Association for Cancer
Research
The incomplete naturalist. Donald Willower on science and inquiry in educational administration
Considers Willower’s theory of inquiry and his stance on science and epistemology which is derived from Dewey’s pragmatist philosophy. Argues that Willower’s naturalism, following Dewey’s understanding, remains incomplete because Dewey did not have at his disposal the required causal neurobiological detail of human learning and cognition. Such detail has recently become available, and Dewey’s biological metaphors are now being cashed out in relation to the causal mechanisms of inquiry, with interesting consequences for Willower’s theory of inquiry. Concludes the article by exploring the notion of reflective inquiry in relation to human cognition, research methodology and organizational cognition.published_or_final_versio
Robust stabilization of singular-impulsive-delayed systems with nonlinear perturbations
Many dynamic systems in physics, chemistry, biology, engineering, and information science have impulsive dynamical behaviors due to abrupt jumps at certain instants during the dynamical process, and these complex dynamic behaviors can be modeled by singular impulsive differential systems. This paper formulates and studies a model for singular impulsive delayed systems with uncertainty from nonlinear perturbations. Several fundamental issues such as global exponential robust stabilization of such systems are established. A simple approach to the design of a robust impulsive controller is then presented. A numerical example is given for illustration of the theoretical results. Meanwhile, some new results and refined properties associated with the M-matrices and time-delay dynamic systems are derived and discussed.published_or_final_versio
Resummation of heavy jet mass and comparison to LEP data
The heavy jet mass distribution in e+e- collisions is computed to
next-to-next-to-next-to leading logarithmic (NNNLL) and next-to-next-to leading
fixed order accuracy (NNLO). The singular terms predicted from the resummed
distribution are confirmed by the fixed order distributions allowing a precise
extraction of the unknown soft function coefficients. A number of quantitative
and qualitative comparisons of heavy jet mass and the related thrust
distribution are made. From fitting to ALEPH data, a value of alpha_s is
extracted, alpha_s(m_Z)=0.1220 +/- 0.0031, which is larger than, but not in
conflict with, the corresponding value for thrust. A weighted average of the
two produces alpha_s(m_Z) = 0.1193 +/- 0.0027, consistent with the world
average. A study of the non-perturbative corrections shows that the flat
direction observed for thrust between alpha_s and a simple non-perturbative
shape parameter is not lifted in combining with heavy jet mass. The Monte Carlo
treatment of hadronization gives qualitatively different results for thrust and
heavy jet mass, and we conclude that it cannot be trusted to add power
corrections to the event shape distributions at this accuracy. Whether a more
sophisticated effective field theory approach to power corrections can
reconcile the thrust and heavy jet mass distributions remains an open question.Comment: 33 pages, 14 figures. v2 added effect of lower numerical cutoff with
improved extraction of the soft function constants; power correction
discussion clarified. v3 small typos correcte
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative k_T
We define and study the properties of generalized beam functions (BFs) and
fragmenting jet functions (FJFs), which are fully-unintegrated parton
distribution functions (PDFs) and fragmentation functions (FFs) for
perturbative k_T. We calculate at one loop the coefficients for matching them
onto standard PDFs and FFs, correcting previous results for the BFs in the
literature. Technical subtleties when measuring transverse momentum in
dimensional regularization are clarified, and this enables us to renormalize in
momentum space. Generalized BFs describe the distribution in the full
four-momentum k_mu of a colliding parton taken out of an initial-state hadron,
and therefore characterize the collinear initial-state radiation. We illustrate
their importance through a factorization theorem for pp -> l^+ l^- + 0 jets,
where the transverse momentum of the lepton pair is measured. Generalized FJFs
are relevant for the analysis of semi-inclusive processes where the full
momentum of a hadron, fragmenting from a jet with constrained invariant mass,
is measured. Their significance is shown for the example of e^+ e^- -> dijet+h,
where the perpendicular momentum of the fragmenting hadron with respect to the
thrust axis is measured.Comment: Journal versio
- …
