7,065 research outputs found

    Theory of SIS tunnelling in cuprates

    Get PDF
    We show that the single-particle polaron Green's function describes SIS tunnelling in cuprates, including the absence of Ohm's law at high voltages, the dip/hump features in the first derivative of the current, a substantial incoherent spectral weight beyond quasiparticle peaks and unusual shape of the peaks. The theory allows us to determine the characteristic phonon frequencies, normal and superconducting gaps, impurity scattering rate, and the electron-phonon coupling from the tunnelling data.Comment: 10 pages, 2 figure

    Optical conductivity of CuO_2 infinite-layer films

    Full text link
    The infrared conductivity of CaCuO_2, SrCuO_{2-y}, and Sr_{0.85}Nd_{0.15}CuO_2 infinite-layer films is obtained from reflectivity measurements by taking into account the substrate contribution. SrCuO_{2-y} and Sr_{0.85}Nd_{0.15}CuO_2 exhibit extra-phonon modes and structured bands in the midinfrared, not found in stoichiometric CaCuO_2. These features mirror those observed in the perovskitic cuprates, thus showing that the polaronic properties of high-T_c superconductors are intrinsic to the CuO_2 planes.Comment: File latex, 5 p. incl. 4 fig. in epsf. Submitted to Solid State Com

    The over-representation of binary DNA tracts in seven sequenced chromosomes

    Get PDF
    BACKGROUND: DNA tracts composed of only two bases are possible in six combinations: A+G (purines, R), C+T (pyrimidines, Y), G+T (Keto, K), A+C (Imino, M), A+T (Weak, W) and G+C (Strong, S). It is long known that all-pyrimidine tracts, complemented by all-purines tracts ("R.Y tracts"), are excessively present in analyzed DNA. We have previously shown that R.Y tracts are in vast excess in yeast promoters, and brought evidence for their role in gene regulation. Here we report the systematic mapping of all six binary combinations on the level of complete sequenced chromosomes, as well as in their different subregions. RESULTS: DNA tracts composed of the above binary base combinations have been mapped in seven sequenced chromosomes: Human chromosomes 21 and 22 (the major contigs); Drosophila melanogaster chr. 2R; Caenorhabditis elegans chr. I; Arabidopsis thaliana chr. II; Saccharomyces cerevisiae chr. IV and M. jannaschii. A huge over-representation, reaching million-folds, has been found for very long tracts of all binary motifs except S, in each of the seven organisms. Long R.Y tracts are the most excessive, except in D. melanogaster, where the K.M motif predominates. S (G, C rich) tracts are in excess mainly in CpG islands; the W motif predominates in bacteria. Many excessively long W tracts are nevertheless found also in the archeon and in the eukaryotes. The survey of complete chromosomes enables us, for the first time, to map systematically the intergenic regions. In human and other chromosomes we find the highest over-representation of the binary DNA tracts in the intergenic regions. These over-representations are only partly explainable by the presence of interspersed elements. CONCLUSIONS: The over-representation of long DNA tracts composed of five of the above motifs is the largest deviation from randomness so far established for DNA, and this in a wide range of eukaryotic and archeal chromosomes. A propensity for ready DNA unwinding is proposed as the functional role, explaining the evolutionary conservation of the huge excesses observed

    s and d-wave symmetries of the solutions of the Eliashberg equations

    Full text link
    We examine the different possible symmetries of the superconducting gap obtained by solving the Eliashberg equations. We consider an electron-phonon interaction in a strong coupling scenario. The Coulomb pseudopotential plays the crucial role of providing the repulsion needed to favour the d-wave symmetry. But the key parameter that allows very anisotropic solutions even with very strong coupling is the small angular range of the interaction due to predominantly electron-phonon forward scattering that is found in the high-Tc superconductors. We find both s and d-wave solutions whose stability depends mainly on the angular range of the interaction.Comment: Uuencoded LaTeX file anf 6 Postscript figures (14 pages). Accepted for publication in Physica

    Infrared response of ordered polarons in layered perovskites

    Full text link
    We report on the infrared absorption spectra of three oxides where charged superlattices have been recently observed in diffraction experiments. In La1.67_{1.67}Sr0.33_{0.33}NiO4_4, polaron localization is found to suppress the low-energy conductivity through the opening of a gap and to split the E2uE_{2u}-A2uA_{2u} vibrational manifold of the oxygen octahedra. Similar effects are detected in Sr1.5_{1.5}La0.5_{0.5}MnO4_4 and in La2_2NiO4+y_{4+y}, with peculiar differences related to the type of charge ordering.Comment: File latex, 11 p. + 3 Figures, to appear on Phys. Rev. B (Rapid Commun.), 1 Oct. 1996. The figures will be faxed upon request. E-mail:[email protected] Fax: +39-6-446315

    Small and large polarons in nickelates, manganites, and cuprates

    Full text link
    By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO), Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of polarons in this cuprate family. While in LSNO and SLMO small polarons localize into ordered structures below a transition temperature, in those cuprates the polarons appear to be large, and at low T their binding energy decreases. This reflects into an increase of the polaron radius, which may trigger coherent transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of Superconductivity - Proc. "Stripes 1996" - Roma Dec 199

    Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold

    Full text link
    We study the multifractal properties of the current distribution of the three-dimensional random resistor network at the percolation threshold. For lattices ranging in size from 838^3 to 80380^3 we measure the second, fourth and sixth moments of the current distribution, finding {\it e.g.\/} that t/ν=2.282(5)t/\nu=2.282(5) where tt is the conductivity exponent and ν\nu is the correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil

    Resistance and Resistance Fluctuations in Random Resistor Networks Under Biased Percolation

    Full text link
    We consider a two-dimensional random resistor network (RRN) in the presence of two competing biased percolations consisting of the breaking and recovering of elementary resistors. These two processes are driven by the joint effects of an electrical bias and of the heat exchange with a thermal bath. The electrical bias is set up by applying a constant voltage or, alternatively, a constant current. Monte Carlo simulations are performed to analyze the network evolution in the full range of bias values. Depending on the bias strength, electrical failure or steady state are achieved. Here we investigate the steady-state of the RRN focusing on the properties of the non-Ohmic regime. In constant voltage conditions, a scaling relation is found between /0/_0 and V/V0V/V_0, where is the average network resistance, 0_0 the linear regime resistance and V0V_0 the threshold value for the onset of nonlinearity. A similar relation is found in constant current conditions. The relative variance of resistance fluctuations also exhibits a strong nonlinearity whose properties are investigated. The power spectral density of resistance fluctuations presents a Lorentzian spectrum and the amplitude of fluctuations shows a significant non-Gaussian behavior in the pre-breakdown region. These results compare well with electrical breakdown measurements in thin films of composites and of other conducting materials.Comment: 15 figures, 23 page

    Regulatory control and the costs and benefits of biochemical noise

    Get PDF
    Experiments in recent years have vividly demonstrated that gene expression can be highly stochastic. How protein concentration fluctuations affect the growth rate of a population of cells, is, however, a wide open question. We present a mathematical model that makes it possible to quantify the effect of protein concentration fluctuations on the growth rate of a population of genetically identical cells. The model predicts that the population's growth rate depends on how the growth rate of a single cell varies with protein concentration, the variance of the protein concentration fluctuations, and the correlation time of these fluctuations. The model also predicts that when the average concentration of a protein is close to the value that maximizes the growth rate, fluctuations in its concentration always reduce the growth rate. However, when the average protein concentration deviates sufficiently from the optimal level, fluctuations can enhance the growth rate of the population, even when the growth rate of a cell depends linearly on the protein concentration. The model also shows that the ensemble or population average of a quantity, such as the average protein expression level or its variance, is in general not equal to its time average as obtained from tracing a single cell and its descendants. We apply our model to perform a cost-benefit analysis of gene regulatory control. Our analysis predicts that the optimal expression level of a gene regulatory protein is determined by the trade-off between the cost of synthesizing the regulatory protein and the benefit of minimizing the fluctuations in the expression of its target gene. We discuss possible experiments that could test our predictions.Comment: Revised manuscript;35 pages, 4 figures, REVTeX4; to appear in PLoS Computational Biolog

    Optical conductivity of the nonsuperconducting cuprate La(8-x)Sr(x)Cu(8)O(20)

    Full text link
    La(8-x)Sr(x)Cu(8)O(20) is a non-superconducting cuprate, which exhibits a doubling of the elementary cell along the c axis. Its optical conductivity sigma (omega) has been first measured here, down to 20 K, in two single crystals with x = 1.56 and x = 2.24. Along c, sigma (omega) shows, in both samples, bands due to strongly bound charges, thus confirming that the cell doubling is due to charge ordering. In the ab plane, in addition to the Drude term one observes an infrared peak at 0.1 eV and a midinfrared band at 0.7 eV. The 0.1 eV peak hardens considerably below 200 K, in correspondence of an anomalous increase in the sample dc resistivity, in agreement with its polaronic origin. This study allows one to establish relevant similarities and differences with respect to the spectrum of the ab plane of the superconducting cuprates.Comment: Revised version submitted to Phys. Rev. B, including the elimination of Fig. 1 and changes to Figs. 4 and
    corecore