285 research outputs found

    Molecular dynamics simulations of supercritical water confined within a carbon-slit pore

    Get PDF
    We report the results of a series of molecular dynamics simulations of water inside a carbon-slit pore at supercritical conditions. A range of densities corresponding from liquid (0.66gcm¿3) to gas environments (0.08gcm¿3) at the supercritical temperature of 673K were considered. Our findings are compared with previous studies of liquid water confined in graphene nanochannels at ambient and high temperatures, and indicate that the microscopic structure of water evolves from hydrogen bond networks characteristic of hot dense liquids to looser arrangements where the dominant units are water monomers and dimers. Water permittivity was found to be very small at low densities, with a tendency to grow with density and to reach typical values of unconfined supercritical water at 0.66gcm¿3). In supercritical conditions, the residence time of water at interfaces is roughly similar to that of water in the central regions of the slabs, if the size of the considered region is taken into account. That time span is long enough to compute dynamical properties such as diffusion or spectral densities. Water diffusion in supercritical states is much faster at low densities, and it is produced in such a way that, at interfaces, translational diffusion is mainly produced along planes parallel to the carbon walls. Spectral frequency shifts depend on several factors, being temperature and density effects the most relevant. However, we can observe corrections due to confinement, important both at the graphene interface and in the central region of the water slab.Universidad Pablo de Olavide. Departamento de Sistemas Físicos, Químicos y NaturalesVersión del edito

    Transitions between Inherent Structures in Water

    Full text link
    The energy landscape approach has been useful to help understand the dynamic properties of supercooled liquids and the connection between these properties and thermodynamics. The analysis in numerical models of the inherent structure (IS) trajectories -- the set of local minima visited by the liquid -- offers the possibility of filtering out the vibrational component of the motion of the system on the potential energy surface and thereby resolving the slow structural component more efficiently. Here we report an analysis of an IS trajectory for a widely-studied water model, focusing on the changes in hydrogen bond connectivity that give rise to many IS separated by relatively small energy barriers. We find that while the system \emph{travels} through these IS, the structure of the bond network continuously modifies, exchanging linear bonds for bifurcated bonds and usually reversing the exchange to return to nearly the same initial configuration. For the 216 molecule system we investigate, the time scale of these transitions is as small as the simulation time scale (1\approx 1 fs). Hence for water, the transitions between each of these IS is relatively small and eventual relaxation of the system occurs only by many of these transitions. We find that during IS changes, the molecules with the greatest displacements move in small ``clusters'' of 1-10 molecules with displacements of 0.020.2\approx 0.02-0.2 nm, not unlike simpler liquids. However, for water these clusters appear to be somewhat more branched than the linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system found by Glotzer and her collaborators.Comment: accepted in PR

    In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge)

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q05023, doi:10.1029/2005GC001204.The Deep Ocean Raman In Situ Spectrometer (DORISS) instrument was deployed at the Sea Cliff Hydrothermal Field and Hydrate Ridge in July 2004. The first in situ Raman spectra of hydrothermal minerals, fluids, and bacterial mats were obtained. These spectra were analyzed and compared to laboratory Raman measurements of standards and samples collected from the site. Spectra of vent fluid (∼294°C at the orifice) at ∼2700 m depth were collected with noncontact and immersion sampling optics. Compared to spectra of ambient (∼2°C) seawater, the vent fluid spectra show changes in the intensity and positions of the water O-H stretch bands due to the elevated temperature. The sulfate band observed in seawater spectra is reduced in vent fluid spectra as sulfate is removed from vent fluid in the subseafloor. Additional components of hydrothermal fluid are present in concentrations too low to be detected with the current Raman system. A precision underwater positioner (PUP) was used to focus the laser spot on opaque samples such as minerals and bacterial mats. Spectra were obtained of anhydrite from actively venting chimneys, and of barite deposits in hydrothermal crusts. Laboratory analysis of rock samples collected in the vent field also detected the presence of gypsum. Spectra of bacterial mats revealed the presence of elemental sulfur (S8) and the carotenoid beta-carotene. Challenges encountered include strong fluorescence from minerals and organics and insufficient sensitivity of the instrument. The next generation DORISS instrument addresses some of these challenges and holds great potential for use in deep-sea vent environments.Funding was provided by the David & Lucile Packard Foundation

    A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C

    Get PDF
    The Raman spectra of thioarsenite and arsenite species in aqueous solution were obtained at room temperature. Solutions at constant ΣAs + ΣS of 0.1 and 0.5 mol kg(-1 )were prepared with various ΣS/ΣAs ratios (0.1–9.0) and pH values (~7–13.2). Our data suggest that the speciation of As under the conditions investigated is more complicated than previously thought. The Raman measurements offer evidence for at least six separate S-bearing As species whose principal bands are centered near 365, 385, 390, 400, 415 and 420 cm(-1). The data suggest that at least two different species may give rise to bands at 385 cm(-1), bringing the probable minimum number of species to seven. Several additional species are possible but could not be resolved definitively. In general, the relative proportions of these species are dependent on total As concentration, ΣS/ΣAs ratio and pH. At very low ΣS/ΣAs ratios we also observe Raman bands attributable to the dissociation products of H(3)AsO(3)(aq). Although we were unable to assign precise stoichiometries for the various thioarsenite species, we were able to map out general pH and ΣS/ΣAs conditions under which the various thioarsenite and arsenite species are predominant. This study provides a basis for more detailed Raman spectroscopic and other types of investigations of the nature of thioarsenite species

    Productive Parvovirus B19 Infection of Primary Human Erythroid Progenitor Cells at Hypoxia Is Regulated by STAT5A and MEK Signaling but not HIFα

    Get PDF
    Human parvovirus B19 (B19V) causes a variety of human diseases. Disease outcomes of bone marrow failure in patients with high turnover of red blood cells and immunocompromised conditions, and fetal hydrops in pregnant women are resulted from the targeting and destruction of specifically erythroid progenitors of the human bone marrow by B19V. Although the ex vivo expanded erythroid progenitor cells recently used for studies of B19V infection are highly permissive, they produce progeny viruses inefficiently. In the current study, we aimed to identify the mechanism that underlies productive B19V infection of erythroid progenitor cells cultured in a physiologically relevant environment. Here, we demonstrate an effective reverse genetic system of B19V, and that B19V infection of ex vivo expanded erythroid progenitor cells at 1% O2 (hypoxia) produces progeny viruses continuously and efficiently at a level of approximately 10 times higher than that seen in the context of normoxia. With regard to mechanism, we show that hypoxia promotes replication of the B19V genome within the nucleus, and that this is independent of the canonical PHD/HIFα pathway, but dependent on STAT5A and MEK/ERK signaling. We further show that simultaneous upregulation of STAT5A signaling and down-regulation of MEK/ERK signaling boosts the level of B19V infection in erythroid progenitor cells under normoxia to that in cells under hypoxia. We conclude that B19V infection of ex vivo expanded erythroid progenitor cells at hypoxia closely mimics native infection of erythroid progenitors in human bone marrow, maintains erythroid progenitors at a stage conducive to efficient production of progeny viruses, and is regulated by the STAT5A and MEK/ERK pathways

    Raman spectral studies of concentrated aqueous solutions of strong electrolytes

    No full text
    The intermolecular hydrogen-bond stretching and librational motions of pure water give rise to broad Raman bands near 170 cm-1, and between 450- 720 cm-1, respectively, at 25 °C. When strong electrolytes such as chlorides and bromides are added to water the Raman intensity near 170 cm-1 is observed to decrease rapidly, whereas a marked increase in intensity near 450-600 cm-1 is observed. The decrease in intensity at 170 cm-1 is consistent with breakage of O — H ... O units, but the increase near 450-600 cm-1 is indicative of hydration, particularly of anions, and the increase is observed to be much larger for Br- than for Cl-. When the temperature of pure water is increased, the intermolecular hydrogen-bond stretching and librational Raman intensities decrease rapidly. The intermolecular Raman intensity from a concentrated chloride or bromide solution, however, decreases only slightly near 450-600 cm-1 with increasing temperature, even to temperatures approaching the boiling points. Such observations indicate that primary hydration of anions is not greatly disrupted even at relatively high temperatures
    corecore