6,402 research outputs found

    Stochastic Description of a Bistable Frustrated Unit

    Full text link
    Mixed positive and negative feedback loops are often found in biological systems which support oscillations. In this work we consider a prototype of such systems, which has been recently found at the core of many genetic circuits showing oscillatory behaviour. Our model consists of two interacting species A and B, where A activates not only its own production, but also that of its repressor B. While the self-activation of A leads already to a bistable unit, the coupling with a negative feedback loop via B makes the unit frustrated. In the deterministic limit of infinitely many molecules, such a bistable frustrated unit is known to show excitable and oscillatory dynamics, depending on the maximum production rate of A which acts as a control parameter. We study this model in its fully stochastic version and we find oscillations even for parameters which in the deterministic limit are deeply in the fixed-point regime. The deeper we go into this regime, the more irregular these oscillations are, becoming finally random excitations whenever fluctuations allow the system to overcome the barrier for a large excursion in phase space. The fluctuations can no longer be fully treated as a perturbation. The smaller the system size (the number of molecules), the more frequent are these excitations. Therefore, stochasticity caused by demographic noise makes this unit even more flexible with respect to its oscillatory behaviour.Comment: 28 pages, 17 figure

    The Spartan 1 mission

    Get PDF
    The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the space shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data

    Exactly solvable statistical model for two-way traffic

    Full text link
    We generalize a recently introduced traffic model, where the statistical weights are associated with whole trajectories, to the case of two-way flow. An interaction between the two lanes is included which describes a slowing down when two cars meet. This leads to two coupled five-vertex models. It is shown that this problem can be solved by reducing it to two one-lane problems with modified parameters. In contrast to stochastic models, jamming appears only for very strong interaction between the lanes.Comment: 6 pages Latex, submitted to J Phys.

    Scaling behavior in the β\beta-relaxation regime of a supercooled Lennard-Jones mixture

    Full text link
    We report the results of a molecular dynamics simulation of a supercooled binary Lennard-Jones mixture. By plotting the self intermediate scattering functions vs. rescaled time, we find a master curve in the β\beta-relaxation regime. This master curve can be fitted well by a power-law for almost three decades in rescaled time and the scaling time, or relaxation time, has a power-law dependence on temperature. Thus the predictions of mode-coupling-theory on the existence of a von Schweidler law are found to hold for this system; moreover, the exponents in these two power-laws are very close to satisfying the exponent relationship predicted by the mode-coupling-theory. At low temperatures, the diffusion constants also show a power-law behavior with the same critical temperature. However, the exponent for diffusion differs from that of the relaxation time, a result that is in disagreement with the theory.Comment: 8 pages, RevTex, four postscript figures available on request, MZ-Physics-10

    Abelian symmetries in multi-Higgs-doublet models

    Full text link
    N-Higgs doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we make the first step towards this goal by classifying the elementary building blocks, namely the abelian symmetry groups, with a special emphasis on finite groups. We describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.Comment: 33 pages, 2 figures; v2: conjecture 3 is proved and becomes theorem 3, more explanations of the main strategy are added, matches the published versio

    On the reconstruction of planar lattice-convex sets from the covariogram

    Full text link
    A finite subset KK of Zd\mathbb{Z}^d is said to be lattice-convex if KK is the intersection of Zd\mathbb{Z}^d with a convex set. The covariogram gKg_K of KZdK\subseteq \mathbb{Z}^d is the function associating to each u \in \integer^d the cardinality of K(K+u)K\cap (K+u). Daurat, G\'erard, and Nivat and independently Gardner, Gronchi, and Zong raised the problem on the reconstruction of lattice-convex sets KK from gKg_K. We provide a partial positive answer to this problem by showing that for d=2d=2 and under mild extra assumptions, gKg_K determines KK up to translations and reflections. As a complement to the theorem on reconstruction we also extend the known counterexamples (i.e., planar lattice-convex sets which are not reconstructible, up to translations and reflections) to an infinite family of counterexamples.Comment: accepted in Discrete and Computational Geometr

    Heat transport in model jammed solids

    Get PDF
    We calculate numerically the normal modes of vibrations in 3D jammed packings of soft spheres as a function of the packing fraction and obtain the energy diffusivity, a spectral measure of transport that controls sound propagation and thermal conductivity. The crossover frequency between weak and strong phonon scattering is controlled by the coordination and shifts to zero as the system is decompressed towards the critical packing fraction at which rigidity is lost. Below the crossover, the diffusivity displays a power-law divergence with inverse frequency, which suggests that the vibrational modes are primarily transverse waves, weakly scattered by disorder. Above it, a large number of modes appear whose diffusivity plateaus at a nearly constant value independent of the inter-particle potential, before dropping to zero above the Anderson localization frequency. The thermal conductivity of a marginally jammed solid just above the rigidity threshold is calculated and related to the one measured experimentally at room temperature for most glasses.Comment: 15 pages, 7 figure

    Density waves and 1/f1/f density fluctuations in granular flow

    Full text link
    We simulate the granular flow in a narrow pipe with a lattice-gas automaton model. We find that the density in the system is characterized by two features. One is that spontaneous density waves propagate through the system with well-defined shapes and velocities. The other is that density waves are so distributed to make the power spectra of density fluctuations as 1/fα1/f^{\alpha} noise. Three important parameters make these features observable and they are energy dissipation, average density and the rougness of the pipe walls.Comment: Latex (with ps files appended
    corecore