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Heat Transport in Model Jammed Solids

Abstract

We calculate numerically the normal modes of vibrations in three-dimensional jammed packings of soft
spheres as a function of the packing fraction and obtain the energy diftusivity, a spectral measure of transport
that controls sound propagation and thermal conductivity. The crossover frequency between weak and strong
phonon scattering is controlled by the coordination and shifts to zero as the system is decompressed toward
the critical packing fraction at which rigidity is lost. We present a scaling analysis that relates the packing
fraction dependence of the crossover frequency to the anomalous scaling of the shear modulus with
compression. Below the crossover, the diffusivity displays a power-law divergence with inverse frequency
consistent with Rayleigh law, which suggests that the vibrational modes are primarily transverse waves, weakly
scattered by disorder. Above it, a large number of modes appear whose diffusivity plateaus at a nearly constant
value before dropping to zero above the localization frequency. The thermal conductivity of a marginally
jammed solid just above the rigidity threshold is calculated and related to the one measured experimentally at
room temperature for most glasses.
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Heat transport in model jammed solids
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We calculate numerically the normal modes of vibrations in three-dimensional jammed packings of soft
spheres as a function of the packing fraction and obtain the energy diffusivity, a spectral measure of transport
that controls sound propagation and thermal conductivity. The crossover frequency between weak and strong
phonon scattering is controlled by the coordination and shifts to zero as the system is decompressed toward the
critical packing fraction at which rigidity is lost. We present a scaling analysis that relates the packing fraction
dependence of the crossover frequency to the anomalous scaling of the shear modulus with compression.
Below the crossover, the diffusivity displays a power-law divergence with inverse frequency consistent with
Rayleigh law, which suggests that the vibrational modes are primarily transverse waves, weakly scattered by
disorder. Above it, a large number of modes appear whose diffusivity plateaus at a nearly constant value before
dropping to zero above the localization frequency. The thermal conductivity of a marginally jammed solid just
above the rigidity threshold is calculated and related to the one measured experimentally at room temperature

for most glasses.

DOI: 10.1103/PhysRevE.81.021301

I. INTRODUCTION

The thermal and mechanical properties of disordered sol-
ids can differ dramatically from those of crystalline materials
[1]. Prominent among the anomalous properties are the spe-
cific heat and thermal conductivity, which display common
features at subhelium to room temperatures, in amorphous
materials ranging from glasses to plastics and even frozen
grease [2]. This commonality suggests that the explanation
of the unusual features of disordered solids may involve gen-
eral physical principles that transcend detailed information
about the chemical structure of specific compounds [3-5].

This paper focuses on the intermediate temperature re-
gime, | K<T<T,n, In this regime, the thermal conduc-
tivity has a plateau followed by a nearly linear rise at higher
T, in contrast to the sharp drop seen in crystalline materials
in the same range [6,7]. In the temperature range of this
thermal-conductivity plateau, the ratio of the heat capacity
C(T) to the expected T° dependence predicted by the Debye
model for crystalline solids, C(T)/T3, exhibits a prominent
peak, termed the boson peak, which is a hallmark of amor-
phous solids [2,8].

At lower temperatures, 7<<1 K, the thermal conductivity
exhibits a 77 rise, in contrast to the 7° dependence observed
in crystals [9]. Meanwhile the heat capacity increases lin-
early in 7 [2,10], in contrast to the T° rise predicted by De-
bye for long-wavelength sound modes. These low-
temperature features have been rationalized by invoking the
scattering of long-wavelength phonons off two-level sys-
tems, posited to arise from groups of atoms tunneling be-
tween two minima [11,12]. While this view of the low-
temperature regime is widely accepted, little consensus
exists regarding the intermediate temperature regime. In par-
ticular, the origin of the plateau in the thermal conductivity is
controversial, and the question of whether the plateau in the
thermal conductivity is linked to the boson peak remains
unresolved.
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In this article, we study a class of model amorphous solids
composed of spherical particles interacting via a repulsive
potential that vanishes at a well-defined distance correspond-
ing to their diameter. These models possess a jamming/
unjamming transition as a function of packing density [13].
Thus, the strength of the elastic moduli can be tuned continu-
ously downwards by decreasing the density of the packing
until the particles no longer interact. At that critical density,
the disordered solid unjams to form a fluid. Numerical simu-
lations have revealed the existence of a large number of vi-
brational modes in excess of Debye prediction whose fre-
quency onset w* can be pushed to zero by decreasing the

packing fraction [14]. The boson peak temperature T* ob-
served in the heat capacity data is controlled by w*~ KZ;LTF,

the Boson peak frequency which heralds the onset of the
excess vibrational modes. Similarly, to understand the pla-
teau in the thermal conductivity and its subsequent rise, it is
useful to determine the energy diffusivity, a spectral measure
of energy transport that elucidates how different portions of
the spectrum contribute to heat conduction.

The energy diffusivity, d(w), quantifies how far a wave
packet narrowly peaked at a frequency w can propagate. We
find that the diffusivity [15] displays a well-defined kink at a
frequency w, that separates the low w regime of divergent
diffusivity (consistent with Rayleigh law) from a character-
istic plateau that persists up to high w where localization sets
in. Numerical calculation of the vibrational density of states
and the diffusivity enables us to track the pressure depen-
dences of the boson peak frequency w* and the transport
crossover frequency w, individually and to compare them.
We find that w,; and w* are not only comparable in magni-
tude, but decrease in tandem as we decrease packing fraction
toward the unjamming transition. This shows that the trans-
port crossover is linked to the excess modes.

A unique feature of disordered sphere packings is that the
transport crossover frequency w, can be obtained perturba-
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tively by means of simple scaling laws parameterized in
terms of the distance from the critical unjamming transition,
denoted as point J [13]. Furthermore in disordered sphere
packings, some of the universal properties of amorphous sol-
ids are manifested in their most extreme form as the unjam-
ming transition is approached. For example, in that limit the
diffusivity plateau extends all the way to the lowest frequen-
cies studied in the simulations. This suggests that in the
amorphous packings studied in this work the origin of the
diffusivity plateau can be traced to properties of the unjam-
ming transition [15].

The outline of this paper is as follows. In Sec. II, we
provide the necessary background on the link between vibra-
tional dynamics and heat transport on which our work is
built and review the scaling properties of jammed solids. In
Sec. III, we review the methodology adopted to calculate the
energy diffusivity using the Kubo formula, which enables a
first-principles calculation of the diffusivity for computer-
generated packings. In Sec. IV, we present our results for the
transport crossover and show that this occurs at the boson
peak frequency. We also present a scaling analysis that ratio-
nalizes how the main features of the diffusivity depend on
the distance from the unjamming transition for both Hertzian
and harmonic interactions. Section V focuses on the most
striking transport signature of jammed packings: a plateau in
the diffusivity as a function of frequency, whose origin we
explain starting from a set of assumptions concerning the
nature of the vibrational modes above the transport cross-
over. The ac thermal conductivity at point J is then obtained
in Sec. VL. In Sec. VII we conclude by summarizing the
broader message of this article: the thermal conductivity of
various amorphous materials under pressure can be ex-
plained from the vibrational modes at point J, which controls
energy transport at higher densities in the manner expected
for a critical point.

II. BACKGROUND

Several theoretical models have been advanced to explain
the boson peak, starting from distinct physical mechanisms
such as the existence of resonant (quasi)localized modes
[16-20], anharmonic interactions induced by the presence of
defects [21,22], the breakdown of continuum elasticity below
a characteristic length scale [23,24] or quenched disorder in
the elastic constants [25-27]. Some of these models find that
the onset of the excess vibrational modes coincides with a
crossover from weakly scattered plane waves to strongly
scattered vibrational modes that are delocalized and poorly
conducting [28,29].

The connection between the boson peak and the transport
crossover has been probed using Brillouin scattering mea-
surements but no firm conclusion has been reached to date
[30,31]. A recent experimental study suggested that the ex-
cess modes in the density of states appear when the mean
free path of longitudinal phonons approaches their wave-
length [32]. This condition to estimate the crossover between
weak and strong scattering was also used in an independent
study that challenges the previous claim by concluding in-
stead that the criterion is satisfied only at frequencies signifi-
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cantly higher than the Boson peak frequency [33]. Classic
experimental studies of Raman scattering point to another
important piece of experimental evidence, namely that the
vibrational modes at the Boson peak are transverse in char-
acter [34,35]. This observation is supported by simulations of
silica [36,37] and soft sphere glasses [38]. Recent numerical
simulations provided additional evidence that suggests the
equality of the Boson peak frequency with the transport
crossover for transverse phonons [39].

A. Vibrational dynamics and heat transport

It was originally suggested by Kittel [40] that the inter-
mediate temperature properties of glasses might be under-
stood from the microscopic vibrational dynamics of amor-
phous materials. Instead of focusing directly on the heat
capacity, C(T), and thermal conductivity, «(T), consider the
density of states, D(w), and diffusivity, d(w). A heuristic ar-
gument for the relation between d(w) and «(T) is as follows.
For a system in a temperature gradient, it is well known that
the heat diffusivity obeys the relation d=«V/C. Thus,
k=dC/V. This relation can be generalized mode by mode.
Thus, the heat capacity is [4,5,41]

C(1)= 2 Clw,.T), (1)

where the sum runs over all vibrational modes i and C(w;,T)
is the heat capacity per mode, which is obtained from the
Bose-Einstein distribution and is a universal function that
characterizes the heat carried by a mode of frequency w; at
temperature 7. Similarly, the thermal conductivity is

K1) =35 d(w)Clw). @)

where d(w;) is the energy diffusivity of mode i.
We may recast Egs. (1) and (2) in continuum form using
the density of vibrational states:

C(T)=J doD(w)C(w,T), (3)

0

x(T) = ‘l/j doD(w)d(w)C(w,T). (4)
0

Both D(w) and d(w) are strongly structure dependent: the
density of states and diffusivity are the fingerprints of the
vibrational modes in the solid and control its heat capacity
and thermal conductivity.

Inspection of Eq. (3) reveals that the prominent boson
peak observed at the temperature 7 in most amorphous sol-
ids is triggered by a large number of excess vibrational
modes that show up in the density of states at a characteristic

« KT . . .
frequency "~ ——. It is known empirically that " in-
creases as the sample is compressed [42,43], a property
shared by the soft sphere packings investigated in this study.
By analogy, Eq. (4) suggests that the origin of the thermal-
conductivity plateau around T* can be similarly traced to the
existence of a transport crossover in d(w) at .

021301-2
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At very low frequency, the diffusivity can be factored out
as the product of the speed of sound v and €(w) [2]:

d(w) = %f(w). (5)

The mean free path €(w) typically diverges as w— 0 because
the corresponding vibrational modes can be regarded as
long-wavelength plane waves weakly scattered by disorder
[44].

B. Jammed sphere packings
In order to shed some light on the pressure dependence of
the density of states and energy diffusivity of disordered sol-
ids, we study a model of amorphous packings of frictionless
spheres interacting via the repulsive pair potential V(r;;)

€ .
V(ry) = ;(1 —ryloy)® if r <oy,

V(rl-j)=0 if rij>0',-j, (6)

where the distance between the centers of particles 7 and j is
denoted by r;; and the sum of their radii by o;;. We generate
T=0 packings by conjugate-gradient energy minimization
according to the procedure described in Ref. [13]. Trrespec-
tive of the value of «, this model system exhibits a jamming/
unjamming transition at 7=0 at a packing fraction ¢= ¢,
(point J) at which the particles are just touching each other
and there is no overlap [13].

The zero-temperature jamming/unjamming transition has
mixed character. At this transition, the average coordination
number, z, jumps [13,45] from zero to the minimum value
required for mechanical stability, the “isostatic” value
2,=2D [46], where D is the dimensionality of the sample. At
densities lower than ¢,, particles are free to rearrange while
above ¢, at A¢p=p— ¢, the system behaves as a weakly
connected amorphous solid with an average coordination
number that scales as a power law with an exponent consis-
tent with 1/2 [13,45],

Az=z-z.~A¢p"% (7)

In addition, both elastic moduli exhibit scaling behavior near
the jamming point consistent with [13,45]

G~ A¢a—3/2, (8)

B~ Ag*2. 9)

For harmonic repulsions (@=2), the bulk modulus is inde-
pendent of compression while the shear modulus vanishes as
point J is approached. The bulk modulus scales as the second
derivative of the potential with respect to compression, while
the scaling of the shear modulus does not follow this naive
scaling.

The ratio G/B~ A¢" of the two elastic moduli is inde-
pendent of « and controls the relative contribution of trans-
verse to longitudinal waves at low frequency. This can be
checked explicitly by considering that the phonon density of
states at very low frequency satisfies the ubiquitous Debye
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w?

law D(w) ~ 5 except at point J where, as we shall see, the
Deybe regime is completely swamped by the excess vibra-
tional modes. The transverse and longitudinal speeds of
sound v, and v; are proportional to the square root of the
shear and bulk moduli, respectively,

v, ~ A¢(201—3)/47 (10)

v~ A2, (11)

Upon substituting into the Deybe formula, D(w)~ w?*/v?,
Egs. (10) and (11) imply that the ratio of the transverse
to the longitudinal density of states at low frequency,
D,/D;~A¢™¥*, becomes arbitrarily large as A¢— 0. Thus,
the density of states is dominated by transverse modes at low
frequencies where wavelike behavior is expected, irrespec-
tive of the potential.

Numerical studies [13,14] have revealed the presence of
excess vibrational modes that contribute to a plateau in the
density of vibrational states above a characteristic frequency,
w"*. Close to the jamming point " increases with density
consistent with the power law [14]

o~ AgleD2, (12)

Thus, the plateau extends to zero frequency in a marginally
jammed solid (i.e., a packing of particles just above the onset
of mechanical rigidity). The scaling of " has been derived
for systems near the isostatic jamming transition using a
variational argument that predicts the presence of extended
heterogeneous modes with strong spatial decorrelations [23].
This structural property suggests that the ability to transport
heat for vibrational modes above w* should be impaired [47].

III. METHODS AND MODEL

The energy diffusivity, d(w), introduced in Sec. II A, can
be viewed physically in terms of the behavior of a wave
packet narrowly peaked at a frequency w and localized at
position 7 at time #=0. The stationary value of the diffusivity,
d(w), is given by the square of the width of the wave packet
at time ¢, divided by ¢ at long times ¢ [4].

If the width grows linearly in time, the diffusivity is infi-
nite; this corresponds to ballistic propagation. If width grows
with the square root of time, a finite diffusivity is obtained;
this corresponds to diffusive propagation. A third possibility
exists, namely that the width of the wave-packet saturates to
a constant value over which the vibration is localized [48].
Such localized modes, typically occur at high w [41]. The
diffusivity is vanishingly small and d(w) cannot be factor-
ized into the product of €(w) and v, as in Eq. (5), because no
speed of sound can be associated with such vibrational
modes.

In this study, we calculate the diffusivity by evaluating the
Kubo formula for d(w) directly [5] for computer-generated
packings in terms of the normal modes over the entire fre-
quency range available. The rationale behind this choice is
twofold. On one hand, we use the energy diffusivity as a
spectral measure of transport to probe the character of the
vibrational normal modes of a jammed solid. On the other

021301-3
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hand, we use the jammed solid as a model amorphous struc-
ture whose transport properties can be studied as a function
of pressure simply by varying the density relative to that of
the unjamming transition. This allows variation over orders
of magnitude of pressure, which cannot be realized in more
realistic models of molecular or network glasses.

A. Review of the Kubo formula for the energy diffusivity

The analogy between the thermal conductivity in the
phononic problem and its better studied electrical counterpart
underlies many of the mathematical techniques and physical
concepts employed in our investigation.

The Kubo formula for the energy diffusivity was derived
in a convenient form by Allen and Feldman in Ref. [5]. Con-
sider the volume-averaged energy current S that arises in
response to an applied thermal gradient V7. In linear re-
sponse, S is given by

S=-«kVT, (13)

where « is the thermal conductivity. More generally, the ac
thermal conductivity «,,,(T,(}), which relates the energy flux
S, in the u direction to the time-varying temperature gradi-

ent in the v direction, d,T e g

1 RN
Kl T,Q) = — J d\ f dte" S (= iiN)S (1)),
vrl), ),

(14)

where V is the volume of the system and the angular brackets
denote an equilibrium average of the autocorrelation function

of the energy current operator S.

[Note that Eq. (14) is analogous to the Einstein relation
for the diffusion coefficient of an ensemble of Brownian par-
ticles in terms of the velocity-autocorrelation function. The
main difference lies in the fact that in the thermal problem

the conserved quantity is the energy density h that obeys the
continuity equation:

oh

—=-V-3r 15

==V, (15)
where s(r) is the local energy-flux operator (assumed to be
isotropic for simplicity) prior to the spatial average that leads

to S. In the case of the Einstein relation, the conserved quan-
tity is the particle number and the role of s(r) is played by
the particle current. ]

Our aim is to extract an expression for the diffusivity d(w)
by comparing Eq. (14) to Eq. (4) when the dc limit of
k(T,Q) is taken, that is, when ) — 0. We first recast Eq. (14)
in terms of a discrete sum over modes i:

KW(T,Q) E —;(S )l/(SV)jia(wi - W= Q),

7 (w;— )
(16)

where n; is the equilibrium occupation number for bosons
n;=[exp(Bhw;)—1]"" and (8,);; is the matrix element of the
energy-flux operator in the u direction. This matrix element
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can be computed from the vibrational normal modes, which
are obtained from the dynamical matrix, H’gg, whose i nor-
malized eigenvector is denoted by ¢;(m; ), where {m,n} and
{a, B} label particles and their Cartesian coordinates, respec-
tively [49]. For disordered solids, the modes must be deter-
mined by numerical diagonalization of the dynamic matrix.

In an isotropic system a scalar thermal conductivity «(7T)
can be meaningfully defined from the trace of the tensor
K,uv(T)

k(T) = 1KM+K + K., (17)

To simplify Eq. (16) further, consider that in the limit
Q) — 0 the delta function forces the factor (n;—n,)/ (w;— ;) to
become —dn;/ Jw;. One can then use Eq. (17) in conjunction
with the identity

ﬁZ 2 Bho;
C(wi’T)=_< VT )(ﬁn ) knlBhoo) (ﬁ’f‘“—)z’

(18)

to show that the thermal conductivity of Eq. (16) can indeed
be factorized as indicated in Eq. (2) with d(w;) given by [5]

dw) = 33 (o) S Pow-w).  (19)

J

where the matrix elements §,~j read [5]

5,=lrel s g

4ww

(m; a)Hm"e (n;8). (20)

mn,af

In the limit w;— w enforced by the delta function in Eq.

(19), the prefactor o, —>1 However, taking this limit re-
quires special care when the Kubo formula (derived in the
continuum limit) is evaluated for a finite and isolated system
with a discrete spectrum [50]. Inspection of Eq. (20) reveals
that the diagonal matrix elements S;; vanish. On the other
hand any contribution to d(w;) coming from the nondiagonal
matrix elements S;; with i # j is given zero weight when the
delta function &(w;—w)) is strictly enforced. This difficulty
can be circumvented by smoothing out the ¢ functions in Eq.
(19) with the small finite width »

Y
m(wi - )’ + 7]

This heuristic procedure is expected to give the correct
“bulk” result as long as the broadening 7 is (a) much larger
than the average level spacing, A, and (b) much smaller than
any characteristic frequency scale relevant to the problem. In
this paper, the broadening of the delta function % in Eq. (21)
is typically chosen to be approximately five times larger than
the average level spacing, A. We have verified that our nu-
merical results do not depend on this choice as long as con-
ditions (a) and (b) are met. In the Landauer formulation of
transport, it is not necessary to introduce the level broaden-
ing n by hand because the inherent coupling of the system to
the reservoirs plays an analogous role [51].

57,(wi— wj) = (21)

021301-4
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One advantage of studying the energy diffusivity instead
of the thermal conductivity is that d(w) is finite at nonzero
frequency when evaluated at the harmonic level. By contrast,
k(T) is generally infinite if anharmonic corrections are ig-
nored. This is because d(w) in the integrand of Eq. (4) di-
verges too strongly at low @ due to phonons that are progres-
sively less scattered with increasing wavelength.

One main result of this paper will be that a marginally
jammed solid is an exception to the rule that the thermal
conductivity should diverge within the harmonic approxima-
tion. However, as the system is compressed above point J,
k(T) again diverges, as in the standard case.

In order to cure this divergence, additional scattering
mechanisms, beyond harmonic theory, are typically invoked
resulting in an additional contribution to the diffusivity,
d.(w). Upon adding d.(w) to the harmonic contribution,
d(w), (for example, as if they were two conductors in series
[52]), one obtains the total diffusivity d{w),

d(@) " =d(0)" +d (@), (22)

Graebner, Golding, and Allen have demonstrated that the
thermal conductivity of many glassy materials can be fitted
by assuming an expression for d{w) consistent with Eq. (22)
or more accurately its analog in terms of the mean-free-path
{(w) [53]. According to their analysis, the first contribution
in Eq. (22), d(w), corresponds to a mean free path that ex-
hibits a cross-over from Rayleigh law {(w)=w™ to a
frequency-independent value €,;,. The second low w contri-
bution, d,.(w), arises from assuming resonant scattering and
relaxational absorption of propagating phonons by two-level
systems [11].

In this study we do not attempt to guess d.(w), instead we
determine how the harmonic scattering mechanisms assumed
in Ref. [53] depend on applied pressure and the choice of
interparticle potential in a model amorphous solid formed by
densification of soft spheres. It is instructive to compare the
result of our harmonic calculations of d(w) summarized in
Figs. 1 and 2, to the mean free path represented in Fig. 3 of
Ref. [53] which incorporates the low @ anharmonic correc-
tions.

Since the Kubo formalism does not rely on the assump-
tion of propagating phonons we expect our results for d(w)
to be valid even in the high-frequency regime, where the
diffusivity cannot be factorized into a product of ¢(w) times
a frequency-independent speed of sound. This spectral re-
gime of the diffusivity is essential to capture the upturn in
the thermal conductivity which occurs above the plateau.
While, the cutoff contribution d,.(w) necessarily dominates at
low temperature, much progress can be made in understand-
ing the plateau in the thermal conductivity and the subse-
quent rise by studying the harmonic contribution, which
dominates as T increases.

B. Model

Our simulations are carried out on jammed sphere pack-
ings, as described in Sec. II B. Specifically, we study a 50/50
bidisperse mixture comprised of 250=N=10 000 friction-
less spheres with a diameter ratio of 1.4, interacting with

PHYSICAL REVIEW E 81, 021301 (2010)

100¢ ; ;

d(w)

0.1

001}

FIG. 1. (Color online) Plots of diffusivity, measured in units of
U\e“m versus frequency, measured in units of Ve/ 02M for an un-
stressed packing of 2000 particles with harmonic interactions at
packing fractions A¢=0.3 (green circles), 0.1 (red squares), 0.05
(blue upside triangles), 0.02 (purple downside triangles), and 0.01
(yellow crosses). The black dots indicate the crossover frequency
wy at each A¢, while the dashed lines show a power law of o™,
expected for weakly scattered plane waves. The plateau diffusivity
is dy=0.35. The inset shows the packing fraction scaling of w,.

potentials described in Eq. (6) with @=2 and a=5/2. The
packing fraction at the onset of jamming, ¢, is characterized
by the onset of a nonzero pressure. We determine ¢, and
obtain T=0 configurations at controlled A¢p=p—¢. as in
Ref. [14]. For each configuration, we diagonalize its dynami-
cal matrix and find the eigenvectors and the corresponding
eigenfrequencies, which are measured in units of \e/Mo?,
where M is the particle mass [14]. Rattler particles with less
than three contacts are unstable and they have been removed
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FIG. 2. (Color online) Plots of diffusivity vs frequency for an
unstressed packing of 2000 particles interacting via a Hertzian po-
tential. The packing fractions are approximately A@=0.3 (green
circle), 0.1 (red squares), 0.05 (blue triangles), and 0.0/2_(Xellow
crosses). (a) d(w) in units of 0'\,%) vs o (in units of Vj), (b)
scaled diffusivity, d(w)/A¢"*, vs scaled frequency, w/Ag'*, show-
ing data collapse in the plateau region. The inset shows the packing
fraction scaling of the crossover frequency wy.
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before performing the normal mode analysis.

We primarily consider an “unstressed” version of this
model [54], which is particularly tractable. We use energy-
minimized configurations obtained from numerically gener-
ated jammed sphere packings as described above. We then
replace the interaction potential, V(r;;), between each pair of
overlapping particles with an unstretched spring with the
same stiffness, V”(rqu), where rqu is the equilibrium distance
between particles i and j. Note that since rf]" takes a different
value between distinct particle pairs there will be a distribu-
tion in the local values of the elastic constants. On the other
hand, the fact that all springs are unstretched guarantees that
there are no net forces between particles in their equilibrium
positions so that stable configurations for the stressed system
are also stable in the unstressed one.

The unstressed packings correspond to dropping terms de-
pending on the first spatial derivative of the potential, V', in
the dynamical matrix obtained from expanding the energy
around the equilibrium position of the particles,

1 " 14 -
O = 3| Vi) (0 o)+ 2 R |

n,m Tnm
(23)

where n, m are indexes labeling the particles.

The approximation of dropping the V' stress term in Eq.
(23) generates an interesting disordered system in its own
right. The resulting off-lattice model, comprised of point par-
ticles interacting with relaxed springs, exhibits both spatial
fluctuations in the local elastic stiffness as well as topologi-
cal disorder (e.g., fluctuations in the local coordination num-
ber). Moreover, its amorphous structure can be varied by
changing the volume.

The effect of the stress term can be seen from Eq. (23).
Since V' is negative for repulsive interactions, the stress term
lowers OE and hence the mode frequency. We will discuss
the effect of the stress term on the diffusivity of a jammed
solid in Sec. V C.

IV. ENERGY TRANSPORT CROSSOVER IN MODEL
JAMMED SOLIDS

Figure 1 shows a scatter plot of the mode diffusivity d(w;)
obtained from evaluating numerically Eq. (19) and (20) at
five packing fractions A¢=0.3 (green circles), 0.1 (red
squares), 0.05 (blue upside triangles), 0.02 (purple downside
triangles), and 0.01 (yellow crosses) for a 2000-particle
packing. Three distinct transport regimes can be clearly iden-
tified in each curve, corresponding to weakly scattered, dif-
fusive, and localized vibrational modes. The characteristic
frequencies that mark the crossover between the plateau in
d(w) and the diverging low o branch are indicated in Fig. 1
as black dots and do not depend on N for systems of this size
or larger. In what follows, the mode diffusivity data is pre-
sented as scatter plots of single particle configurations for
clarity. We have tested that performing a frequency binning
followed by a disorder average over several distinct configu-
rations confirms our conclusions [15].

At very high frequencies, the diffusivity drops rapidly as a
result of localization of the vibrational modes. The contribu-
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tion of localized modes to the thermal conductivity is negli-
gible if anharmonic effects such as hopping are ignored. Fig-
ure 1 shows that the localization frequency for particles
interacting with a repulsive harmonic potential does not de-
pend strongly on A¢ close to the jamming point.

At low frequencies, the energy diffusivity exhibits a
strong frequency dependence characteristic of vibrational
modes that are essentially phonons weakly scattered by dis-
order. As a comparison we have drawn black dashed lines in
Fig. 1 indicating the power-law divergence with w™ ex-
pected for Rayleigh scattering of plane waves incident on
uncorrelated scattering centers. Close inspection of the scat-
ter plot reveals that the low w peaks occur close to the dis-
crete frequencies allowed in our cubic simulation box of size
L by the linear dispersion [55,56],

20, H5————
=" NP+t (24)

where {p,q,r} denote the quantum numbers for the periodic
system and the speed of sound v, is the transverse one for
most low @ modes near ¢,, see Eq. (10) and (11). In the
continuum limit we expect that their density of states at very
low w will be given by the Deybe law D(w)~ 4.

The intermediate frequency regime is the one of most
direct relevance to the intermediate temperature behavior of
the thermal conductivity. Strikingly, this regime is character-
ized by a diffusivity, henceforth labeled as d,, that is nearly
independent of frequency (Fig. 1). The notion of a
frequency-dependent diffusivity has a long history dating
back to Kittel’s observation [40] that the experimental curve
for k(T) in many glasses at room temperature could be inter-
preted in terms of a nearly frequency-independent mean free
path of the order of a molecular length.

The onset of the plateau in the diffusivity is marked by a
crossover frequency, that exhibits a peculiar scaling with the
packing fraction A¢. We henceforth label it as w,. The inset
of Fig. 1 reveals that w,~A¢°> for a system composed of
harmonic springs. This is the same scaling with A ¢ observed
for the frequency w* above which a large excess of vibra-
tional modes have been observed in previous studies of the
density of states [see Eq. (12) with a=2].

A. Dimensional analysis

Figure 1 shows that d(w) is characterized by a well-
defined crossover from ballistic to diffusive behavior. Our
aim in this section is not to provide a rigorous derivation of
the functional dependence of the diffusivity on frequency,
but rather to understand how the defining features of the
diffusivity (the height of the plateau, d,;, and the scaling of
the crossover frequency, w,;) depend on applied pressure.
This is done by keeping track of how the fundamental pa-
rameters that enter the definition of d(w) scale with the pack-
ing fraction A¢. First, however, we must understand how
these parameters depend on the dimensional parameters in
our system: the particle diameter, o, the particle mass, m,

and the energy scale for the potential, €.
2
The diffusivity has dimensions of &;r‘%]- The natural unit

of frequency in a vibrational system, by which the w axis in
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Fig. 1 is measured, is \/% where k is the bare elastic cou-
pling of the solid. More generally an effective spring con-
stant, ks, can be defined by differentiating twice the inter-
action energy V(r;;) of Eq. (6) and evaluating the result at the
average equilibrium bond length (rfﬁ) of interacting neigh-
bors,

(92‘/(}’,“")
ko= =2 (25)
Tum =)

There is a simple linear relation between the relative
. eq . .
change 1n'(rnm) upqn compression and the corresponding
macroscopic change in volume A ¢,

o= (rid) _ A

- 3 (26)

where the numerical prefactor in the right-hand side of Eq.
(26) was checked numerically [57].
From Egs. (25) and (26) we see that

—1[{Agp\*?
S e

For harmonic repulsions, a=2 and k, ;= €/ o is independent
of A¢, while for Hertzian potentials, k,;,~ A%

Note that the bulk modulus obeys the same scaling
[13,45], so

B~ keff’ (28)

whereas according to Egs. (7) and (8) the shear modulus
scales as

N Az ~ A", (29)
kegy
independent of «. The difference in the scaling properties of
the bulk and shear modulus upon compression is the hall-
mark of the anomalous elasticity of jammed solids whose
consequence for energy transport will be explored in the next
section.

The dimensional length scale in this problem is the par-
ticle size, . As a result, the diffusivity is naturally measured
in units of the product of ¢ times the characteristic fre-
quency scale

g2+ Kt
d(w) ~ o TR (30)
Inspection of Fig. 1 reveals that, as w increases, the diffusiv-
ity decreases rapidly until it saturates at a value that we de-
note by dy. Note from Fig. 1 that dy=0.350"\k,z/M
=0.350\e/M, see Eq. (30).
Similarly, upon evaluating Egs. (27) and (30) for a Hert-
zian potential (@=5/2) in three dimensions, we obtain the
following prediction for the value of d,

31/4 €
dQZCﬁO' MAQ&”“ Hertzian. (31)

dy=co\e/MA$"* where c is of order unity. Figure 2(a)
shows d(w) for a Hertzian system at four different packing
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fractions. Clearly, d,, increases with A¢. If we divide d(w)
and o by A¢"* as in Fig. 2(b) we get a good collapse of the
data, indicating that d, obeys the prediction, with ¢=0.35.
The numerical value of ¢ is independent of the potential used
and will be derived purely from the random geometry of a
marginally jammed packing in Sec. V B.

We note that the application of the Kubo formula to the
Hertzian packings rests on the observation that the energy of
a particle slightly displaced from its equilibrium position is
harmonic even if the interparticle interaction is not a qua-
dratic function of the particle overlap. The validity of the
linear response theory adopted in this work can be indepen-
dently tested by performing direct molecular dynamics simu-
lations of the energy diffusivity [4,5] and the thermal con-
ductivity [58].

These results for harmonic and Hertzian potentials sug-
gest that the plateau in the diffusivity is consistent with what
is loosely referred to as the “minimal conductivity hypoth-
esis” [40,59]. The diffusivity d,, is minimal in the sense that
the length scale that multiplies the characteristic frequency is
the smallest length that can be chosen in the system, the
particle diameter o.

Once d(w) attains its “minimal” value it cannot decrease
by much as w increases, unless a transition occurs to a new
transport regime characterized by a vanishingly small diffu-
sivity. This is precisely what happens at the end of the pla-
teau where localization sets in.

B. Scaling of transport crossover

In this section, we provide a scaling argument for the
dependence of the crossover frequency w,. At the crossover,
where the diffusivity plateau d,, begins and the regime of
diverging diffusivity has just ended, the kinetic formula for
the diffusivity, Eq. (5) leads

1
d0=§l), €d' (32)

In writing Eq. (32), we have assumed that an effective trans-
verse speed of sound can be assigned to the vibrational
modes at the onset of the plateau. This working assumption
is corroborated in Sec. IV D where the dispersion relation
determined numerically is found to be approximately linear
up to the crossover frequency w, and to exhibit a smooth
crossover above it. The transverse speed of sound is chosen
because the phonon density of states at low w is dominated
by shear waves near point J as apparent from Egs. (10) and
(11) and the discussion following it.

We can now solve Eq. (32) for the mean-free path €, at
the crossover

3d k
0=~ Zeff

, 33
. G (33)

where we used the expression for d,, given in Eq. (30) and
the fact that the transverse sound speed v, is proportional to
the square root of the shear modulus G.

Upon substituting Eq. (29) into Eq. (33), one obtains an
expression for the packing fraction dependence of €, which
is independent of «
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g~ A2~ A (34)

Upon approaching point J, the mean free path €, at the onset
of the diffusivity plateau becomes arbitrary large compared
to the particle size o. The scaling in Eq. (34) is consistent
with previous numerical studies of the peak position (as a
function of wavevector) of the fransverse structure factor
measured at the frequency onset of excess modes, which
found a scaling of A¢%24=003 [14].

It is instructive to compare ¢, to a second characteristic
length present in this problem, namely, the ratio between the
transverse speed of sound and the crossover frequency w,.
More precisely we wish to compare €, to 1/¢g,, the wave-
length of the transverse wave that would exist in the spec-
trum of an ordered solid according to the dispersion relation
w,;=v,q, We find that over our range of compression

That is to say, the wavelength 1/¢, is of order of the mean-
free path €, at the onset of the diffusivity plateau, indepen-
dently of the packing fraction.

Upon substituting Eq. (34) in the dispersion relation and
using Egs. (27) and (8), we obtain

2
G
wd~v_l~{=~A¢(a—l)/2. (36)
Kegr  Nkoff

It is straightforward to conclude from Eq. (36) that w,
should scale as A¢'? and A¢p¥* for harmonic and hertzian
interactions, respectively. This conclusion is consistent with
the numerical results plotted in the insets of Figs. 1 and 2(b).

Indeed when w, is measured in the natural dimensionless
units of \/E as in Fig. 2, it is simply given by ratio of the
shear modulus and the effective spring constant. Upon sub-
stituting Eq. (29) into Eq. (36), one obtains

, G
T T Aaag (37)
NKerr eff

independently of . The scaling analysis leading to Egs. (34)
and (37) suggests that the scaling of €, and w, can be traced
to the anomalous scaling of the shear modulus in the vicinity
of the unjamming transition.

The argument presented above does not assume that the
mean-free path is necessarily comparable to the wavelength,
as wy is approached from below. See for example the calcu-
lations performed on the mean-field model of Ref. [60]
where this is not the case. In future work, we hope to probe
with greater spectral resolution the behavior of the diffusivity
in the crossover region for a larger range of packing fraction
to conclusively settle these issues. The limited dynamic
range attained in the simulations presented in this study
stems from the fact that the crossover cannot be seen if €,
exceeds the system size. The disappearance of the low-w
diffusivity upturn at the lowest A¢ is clearly seen in Figs. 1
and 2, indicating that for smaller values of the packing frac-
tion the system size used in the simulation is not large
enough to study the transport crossover.
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FIG. 3. (Color online) Plot of the transport crossover versus the
boson peak at different A¢ in jammed packings of 2000 particles
with harmonic (black open circles) and Hertzian (red open tri-
angles) repulsions. The ratio is near unity and is nearly constant
with A¢.

C. Relation of transport crossover to boson peak

In this section we show numerically that the transport
crossover frequency w,; observed in the diffusivity plots of
Figs. 1 and 2, corresponds to the same frequency scale, w”, at
which the onset of the excess vibrational modes is observed
in the density of states. The advantage of jammed sphere
packings over models studied previously is that one can
verify this identification at different packing fractions and
hence test not only that the two frequency scales are close in
numerical value for a given ¢ but also that they scale in the
same way as a function of compression.

We first note that the scaling for w, in Eq. (36) is identical
with the earlier numerical observation of the boson peak fre-
quency, ", in Eq. (12) as well as with the relation derived
theoretically in Ref. [23] for the frequency onset of the
anomalous modes of compressed jammed packings. Figure 3
shows the ratio w,/ " as a function of compression, Ad.
Here, the frequency w* is measured numerically from the
onset of the plateau in the density of states; see Ref. [61] for
details. The variation of the ratio w,/@" is small compared
with the variation of w,, which changes by an order of mag-
nitude over the same range of A¢ (see inset to Fig. 1). Thus,
the transport crossover frequency and boson peak frequency
track each other, implying that the same physics underlies
both phenomena. In particular, the result shows that the ex-
cess modes above the boson peak frequency have a small and
nearly frequency-independent diffusivity.

D. Change in nature of modes at transport crossover

The Fourier decomposition of the vibrational modes
evolves dramatically as the frequency is increased through
the transport crossover at w, We concentrate here on
fr(q,w), the transverse Fourier components [62,63]:

Fr(g.0) =< > (38)

where ¢ denotes the wave vector and e,(w) is the polariza-
tion vector of particle n of the mode at frequency, w. The
brackets indicate an average over directions of g.

At all compressions, f7(¢g,w) has a low-wave-vector peak
at g=q,. that shifts to higher values with increasing fre-

2 G e, (@exp(iq-r,)

n
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FIG. 4. (Color online) Transverse mode structure factor f(q,w)
for N=2000 and A¢=0.1 at @=0.23 (black circles) below the trans-
port crossover at w;=0.36 and at w=0.74 (red crosses) well above
the crossover. (b)—(d) Phonon dispersion relations for (b) A¢=0.1,
(c) 0.05, and (d) 0.01, respectively. The data are at discrete values
of ¢ because of the finite system size. The horizontal (blue) dotted
line in each panel (b)—(d) marks w,, while the solid (red) line marks
the transverse sound speed that varies with compression as given by
Eq. (10). As a comparison, the dashed (green) line is the same in
each panel (independent of compression) and has a slope propor-
tional to the speed of longitudinal sound. Note that the solid line
gives the dispersion for frequencies below w,.

quency. Two typical examples are shown in Fig. 4(a) at
A¢p=0.1. Well below w, (black dots), where the diffusivity
decreases rapidly with increasing frequency, the peak is
sharp and tall. Here the modes resemble weakly scattered
transverse plane waves with wave vector ¢, By contrast
well above w, (red crosses), in the region of the diffusivity
plateau, the peak is dramatically less pronounced; the peak
height is ~50 times smaller than for the black curve and is
comparable to the background signal observed at higher q.
This is the characteristic signature of the strong-scattering
regime where vibrational modes can no longer be meaning-
fully characterized by a narrow range of g. Such modes are
poor conductors of energy, as reflected in the low value of
d(w) above w,. This evolution in character is not sharp and
the peak height decreases continuously as w increases past
w,; a peak—albeit a small one—appears even for modes in
the diffusivity plateau.

From data of ¢, versus @ one can determine the
transverse-sound dispersion curve [62,63]. Figures 4(b)-4(d)
shows the transverse dispersion relation for three of the
packing fractions shown in the diffusivity plot of Fig. 1.
Each point represents the value of ¢,,, obtained from the
peak in f;(q,w) for a single vibrational mode of frequency
. In other words, each point represents the wavevector that
makes the largest contribution to a vibrational mode. At each
packing fraction the crossover frequency w, is represented
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by a horizontal dotted line. The solid red line, w=v,q, shows
the expected transverse dispersion relation with v, decreas-
ing with decreasing A¢ on the basis of Eq. (10). The dashed
green line in each panel has the same slope independent of
A¢. From Eq. (10), its slope is therefore proportional to (but
smaller than) the longitudinal sound speed, v,.

These dispersion curves also show a marked change in
behavior as the frequency is varied through w,;. Well below
the crossover frequency, the peaks are not only sharp, as
indicated by the behavior in Fig. 4(a), but their position cor-
responds with that given by the transverse speed of sound
(red solid line) [55,56]. As w increases above w,, the peaks
broaden and they start to depart from the line given by the
transverse sound speed. Instead, the lowest values of ¢«
shift to smaller g and begin to track the green line which has
a slope independent of compression and proportional to the
longitudinal, not the transverse, speed of sound. The spread
in the positions of g,,,, for frequencies w> w, indicate that
the peaks are very broad in this region. Similar results for

f1(g, w) and the transverse dispersion relation above w,; were

earlier found for a model that included the stress terms in the
energy [63]. In that case, the dispersion relation above w,,
showed essentially no variation in the position of the peaks,
Gmax> despite an increase in A¢ by five orders of magnitude.
[The data in that study is slightly different from the data
reported here in that it showed averaged f{(q, ) over several
nearby frequency modes in a bin instead of the peaks in
individual modes. Both ways of treating the data show the
same general features. ]

V. PLATEAU IN THE DIFFUSIVITY

In the previous section, we have shown that w,, where the
diffusivity flattens out, scales in the same way as does the
frequency associated with the excess modes in the density of
states. We can thus consider the flat diffusivity as the trans-
port signature of the excess vibrational modes that generate
the boson peak. In the present section, we will focus on why
the diffusivity is flat over an extended frequency range above
w,. We will address this (A) by showing that from the form
of the matrix elements, the diffusivity should be simply pro-
portional to the density of the modes themselves, which is
also flat in this region, and (B) by examining what properties
of the modes are necessary for producing a flat diffusivity.
Our study suggests that w,;~ »* vanishes at point J. At this
point, the plateau extends over the entire frequency range up
to the onset of localization. This simplifies the analysis.
Thus, Point J is a natural place to gain insight into the origin
of the constant diffusivity.

A. Energy-flux matrix elements

We start by showing that the energy-flux matrix elements
have a particularly simple form at the jamming threshold,
which enables us to determine the N— o behavior of the
diffusivity [15]. Consider the frequency averaged matrix el-
ements defined as

S0 = 2[5 d0-w)do -w),  (39)
i

where i and j are indexes labeling the vibrational modes and
the matrix elements S;; are given by Eq. (20) in the limit

w;— (l)j
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FIG. 5. (Color online) Diffusivity just above the jamming tran-
sition at A¢p=107%. (a) Contour plot of the heat-flux matrix ele-
ments |2(w,»’)|? plotted versus » and o’ at N=2000. (b) Scaling
plot showing collapse of [2(w, »')|> at N=2000 (black solid), 1000
(red dashed), and 500 (blue dotted) with scale factors s2 and w. (c)
Scale factors s (red symbols), and w (black symbols) versus w. We
find 5% w? (red dashed line) and wo w (black dotted line) except at
high w. (d) Scatter plot of d(w) with N=2000 and delta function
broadening 7=0.002. Solid line shows the predicted d(w) for the
infinite system.

Figure 5(a) shows the heat-flux matrix elements
|¥(w, w')[? defined in Eq. (39) for packings at ¢— ¢, =106
for different values of w versus ’. Note that the matrix
elements are symmetric in @ and ' and that they increase
with increasing w and o’. Figure 5(b) shows that all the
curves for different system sizes, N, and frequencies, w, can
be collapsed onto a simple scaling form given by

- 1
2 (w,0")> ~ X/w,z if > o,

1
|i(w,oo’)|2 ~ ﬁwz if 0 <o, (40)

except at high frequency where the modes become localized
[63-66] and the curves in Fig. 5(b) start peeling off from the
dashed-dotted (green) line. Figure 5(c) shows that the scale
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factors for the collapse satisfy s>=w? and w=w, respectively,
consistently with Eq. (40). The scaling collapse demonstrates
that the only noticeable system-size dependence is a prefac-
tor of 1/N [67]. Since for large N, the density of states scales
as N [14], Eq. (4) therefore yields a well-defined diffusivity
in the N— oo limit, shown as the solid curve in Fig. 5(d).

The scaling collapse in Fig. 5(b) implies that
|§(ou,w)|20c ®?/N at low frequencies. This result, combined
with Eq. (19), implies that d(w)*D(w) at low . This
N — o prediction for d(w) is shown as the solid line in Fig.
5(d). Thus, the diffusivity is nearly constant down to w=0 at
point J because the density of states is nearly constant there
[14].

Over most of the frequency range, this N— o prediction
agrees very well with the scattered points in Fig. 5(d), which
show d(w) for a system with N=2000. At low frequency
d(w) deviates from the solid line and exhibits an upturn. This
upturn is a finite-size artifact that arises from replacing the
delta function with a smoothing function in Eq. (21). It
scales as w™> with a prefactor that vanishes as N— o and
n— 0.

B. Properties of modes in the plateau

It is important to understand what specific properties of
the modes give rise to the plateau in the diffusivity. To sim-
plify the analysis, we will consider only systems of mono-
disperse particles interacting via harmonic repulsions
(a=2) just above the jamming threshold. The argument can
be generalized to the bidisperse case studied in this paper.

The starting point for deriving the flat diffusivity and for
deriving its plateau value, d,, is Eq. (20) for the matrix ele-
ment of the heat-flux operator evaluated using periodic
boundary conditions. Recall that for two modes of frequen-
cies within a bin centered at w the matrix element S;; reads

hi o e s o -
ij = zv_ME e(”al)H(Rm’Rn)e(m,])(Rm - Rn)9 (41)

S
where n and m label the particles, 13,1 and ﬁm their positions,
H(R,,.R,) is the dynamical matrix element (itself a D% D
matrix in D dimensions) between these two particles, é(n,i)
is the displacement of particle n in mode i and M is the
particle mass. (Note that Eq. (41) differs slightly in notation
from Eq. (20) because the latter indicates the Greek indexes
corresponding to Cartesian coordinates explicitly.)

Next set (R,,—R,)=0R,,,, where o is the particle diameter
and Iénm the unit vector from n to m. Set the nondiagonal

terms H(R,,.R,)=kR,,®R,,, where k is the contact stiff-
ness. With this substitution, Eq. (41) can be rewritten as a
sum on all contacts {(1,m):

thok ~ ~ “
DTS Ry [@00) - Roy)(@m.j) - Ryp)

S..=
v 2VM (n,m)

—(&(n,7) - Ryp)(@(m,1) - R,,)]. (42)

We can then rewrite the sum in Eq. (42) as:
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2((1)) = 2 énl}l[(é(n9i) : Iénm - 5(}’",1) : Iénm)(é)(m’]) : Iénm)

(n,m)

—(&(n,)) - Ry = €m,)) - Ry (E(mii) - R,,) 1, (43)

and

S(0)= 2 Ryl (87,)(@m,)) - R,,) = (87, (Em,i) - Ry,

(n,m)

(44)

where 5r;mE(é(n,i)~I§,,m—e*(m,i)'Ié,,m) is the stretching of
the contact nm corresponding to mode i. Taking the ampli-
tude squared of X leads to diagonal and nondiagonal terms.
The latter are of two forms:

(81 R (37 Ry ) (@(m, ) - Ryp) (E(q.)) - Ryp).  (45)

(88 R (871, R, )(@(m, ) - R, (@(pai) - R,),  (46)

where nm and pg correspond to two distinct contacts.

We now make some assumptions about the nature of the
modes whose validity we test numerically. (i) If the displace-
ments are uncorrelated between different modes
((é(m,j)-é(g,i))=0), the two terms above become:

(87 R o) (87 1, N(Em.J) - Ryp) (E(q.j) - Ryg)) s (47)

(87 R (@) - Ry )X(Em ) - Ry (87 Ry
(48)

This assumption was tested numerically in a packing com-
prised of N=2000 particles at A¢=10"° for the low-
frequency modes. Each of the two terms was found to be of
the order of 1072! which is vanishingly small within numeri-
cal precision.

We next assume that modes have weak spatial correla-
tions. Numerical simulations actually support that such cor-
relations exist [63] and grow as the frequency decreases.
Neglecting them nevertheless appears to yield good quanti-
tative results, as we shall see below. In particular, each of
these two terms in Eq. (47) vanish under the specific assump-
tions that (ii) the directions of the stretching of different con-
tacts within a mode are not correlated in space
(((5rf1m§nm)(5r;,q1%pq)>=0) and that (iii) the directions of
stretching and of displacement are locally uncorrelated
(<(5r£,m1énm)(5(q,i)-I%M)>=O). For assumption (ii) we find
that the corresponding terms are of the order of 107! or
lower. For assumption (iii) we find a term of the order of
10713 or less. If the quantities were correlated, we should
find that for extended modes they are of the order of
1/N=10"*, which is much larger than the values shown
above. Therefore, the assumptions listed above appear to be
reasonable and we are left with

SP=22 &la(@m.)) - Ry, (49)
(n,m)

Assuming now that (iv) the amplitude of the displacements
between two modes are not correlated (which does not apply
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to localized modes, where the displacements are anticorre-
lated since localized modes do not live on the same regions
of space) then we have:

ISP=2 2 (8, (Em.j) - Ry (50)

(n,m)

The modes are normalized so ((é(m,j)'lénm)z)=1/ND,
where D is the dimensionality of space. Also, the mode en-
ergy is SE=Maw?/2=k/23,,,0r" >, so we obtain

nm?

2Mw?* 1
= —. 51
> k ND 1)
Then we have for Eq. (42)
W w’o’k
sp= ek (52
2V“DN
This leads to
D(w)o’k
d(w) = TRLTk (53)
3mD

where D(w) is the density of states per particle. In units
where o=k=m=1, we obtain

doz -, (54)

in three dimensions, where d, and D, denote the plateau
values of the diffusivity and the density of states, respec-
tively. This is consistent with the numerical data in Fig. 5(d),
which shows that the diffusivity roughly follows the nearly
flat density of states at point J.

In summary, we obtain a frequency-independent diffusiv-
ity when the density of states is frequency-independent and
the following conditions are satisfied: (A) displacements of
particles in different modes of similar frequency are uncor-
related; (B) the directions of changes in the relative displace-
ments of pairs of interacting particles are spatially uncorre-
lated within a given mode; and (C) the direction of change in
the relative displacement of a pair of interacting particles is
uncorrelated from the direction of the displacement.

C. Stressed packings

Until now, we have neglected the forces that particles
within a jammed packing exert on each other by replacing
compressed springs between particles with springs at their
equilibrium length (see Sec. III B). Here we restore the stress
terms into the dynamical matrix and examine how they affect
the behavior. The scatter plot of the diffusivity of stressed
samples shown as (black) dots in Fig. 6, plateaus at the same
value d, observed in unstressed samples, shown as (red)
crosses. However, the low w upturn of the diffusivity that
occurs below w, in the unstressed packing, is not clearly
detected in the stressed data.

According to Eq. (23), the stress term, V'(r), lowers the
energy and frequency of each vibrational mode because
V'(r) is negative for repulsive interactions. As a result, finite-
size effects, which cut-off plane waves at low frequencies,
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d(w)

FIG. 6. (Color online) Diffusivity for A¢=0.1 in stressed
(black circles) and unstressed (red crosses) packings composed of
1000 particles with harmonic repulsions.

are more obstructive because the corresponding wavelengths
exceed the system size. This prevents us from studying the
packing fraction dependence of the transport crossover fre-
quency w, directly in stressed systems and to test the validity
of Eq. (37) [68].

Nevertheless, we note that the scaling of w,; with com-
pression should be the same in the stressed case as in the
unstressed one if w, remains proportional to w™. This follows
from the fact that the boson peak frequency, w*, follows the
same power law [Eq. (12)] as in the unstressed case. This is
illustrated in Fig. 7, which shows that the low-frequency
portion of the vibrational spectrum collapses onto a single
curve when o is scaled by w*~ A¢!"? for harmonic repul-
sions.

VI. AC THERMAL CONDUCTIVITY AT POINT J

The calculation of the energy-flux matrix elements in Eq.
(40) opens up the possibility of estimating the thermal con-
ductivity «(7,{)) of the marginally jammed solid at point J,
in the presence of an ac thermal gradient driven with angular
frequency (). As a starting point we rewrite Eq. (16) as an
integral over w rather than a double sum over eigenmodes

Kk(T,Q) =— %f [n(w+ Q) — n(w)]{w+ Q|S|w)|?

X D(w)D(w+ Q)dw. (55)
where the frequency averaged matrix elements read

2 L ,
/‘_\y\_"*'l.l

3 ("l‘ ‘,.A}_ﬁg_f;;},-_;{
— |

el “. ll |
o
o I |
P
7 B
—Af Ll I l‘ ‘\'\

01 ] i0 100

FIG. 7. (Color online) Density of states D(w) vs w/w”* for
A$=0.0001 (black dotted), 0.01 (yellow dashed-dot-dot), 0.05
(blue dot-dashed), 0.1 (red dashed) and 0.3 (green solid), for a
stressed system with N=2000 with harmonic repulsions. Note that
" scales according to Eq. (12). This scaling produces a good col-
lapse of the vibrational spectrum at low frequency.
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20+ Q)2
|<w+Q|S|w>|2=ﬁm(ﬂwwv,w)z, (56)
2
z%<1+%), (57)

and higher order corrections in terms of ()? have been
dropped. The prefactor in Eq. (20), which was set to unity in
evaluating 3 (w,®’), has been explicitly included since the
mode coupling between w and ' is no longer restricted to
vibrational states at the same frequency. Despite the concise
notation adopted, Eq. (55) accounts for both upwards and
downwards jumps, w— w = (), corresponding to energy be-
ing absorbed or injected into the reservoirs [69]. In order to
obtain Eq. (57), Eq. (40) was substituted into Eq. (56).

With the aid of Eq. (18), we can expand the difference in
occupation numbers to first order in ()

n(w+ Q) —n(w) T a| T
T —h—wzC(w)—Qﬁ—w{h—wzC(w)]

(58)

Upon substituting Egs. (58) and (57) into Eq. (55), four
terms are obtained of which one is O(Q?) and it will be
ignored. After performing an integration by parts on the
O(Q) term involving the w derivative and canceling out two
terms which are equal and opposite, we obtain

A(T,Q) f‘"max

WCON% Clw)dw + Q[ C(w)]ym, (59)

0

where N is the value of the plateau in the density of states.
The desired result follows, according to Eq. (18), upon
setting Clwp=°)=0

W(T.Q) = 7TC0N(2)1<123 ( Q)

P ol — k_) + O(Qz), (60)
B

where the numerical constant « is given by

f G (61)
a= —dx.
0 (ex_l)Z X

As expected intuitively, a nonvanishing driving frequency ()
results in a lower thermal conductivity.

Equation (60) allows the calculation of the T-dependent
dc thermal conductivity (2 — 0) at point J. We note that this
is particularly simple and can be calculated at the harmonic
level without facing any divergences because no acoustic
phonons are present, since w, is effectively shifted to
zero. From Eq. (60), we find that «(7) grows linearly in
temperature for small 7 and saturates above a temperature
kpTmax =h ., Where o, is the maximum frequency
above which there are no more vibrational states. This fol-
lows from assuming that both the density of states and the
diffusivity are approximately o independent as expected
from the scaling analysis and numerical extrapolations pre-
sented in Sec. IV A. Thus, a plateau in the diffusivity leads to
an approximately linear increase of «(7) followed by a
saturation.
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VII. CONCLUSION

We have studied a class of model amorphous solids whose
elastic properties can be tuned by varying the density near
the jamming/unjamming transition, point J. The proximity to
point J allows variation in the crossover frequency that
marks the onset of the plateau in the diffusivity, w,, with A¢.
As A¢p—0, our scaling arguments show that w;— 0, so that
the plateau in the diffusivity extends all the way down to
zero frequency. Moreover, the value of w, agrees (within a
factor close to unity) with the boson peak frequency w* that
marks the onset of the excess vibrational modes in the den-
sity of states. Both w; and " scale the same way with Ag.

The findings presented in this study enable us to establish
that there is a frequency regime in which the diffusivity is
small and nearly constant, and that the boson peak frequency
coincides with the energy transport crossover frequency for
all pressures applied to our unstressed amorphous packings
of repulsive spheres. More work is needed to assess the re-
lationship between the boson peak and the transport cross-
over when prestress is important. Nonetheless, our results
suggest solutions to two conundrums posed by these amor-
phous solids. First, in such systems, the plateau in the ther-
mal conductivity at intermediate temperatures is followed by
a rise and then a saturation at high temperatures unlike crys-
tals that show the opposite behavior, with a thermal conduc-
tivity that decreases with T at high T, see Fig. 5.1 in Ref. [2].
Second, the temperature range of the plateau in the thermal
conductivity lies near the temperature at which the heat ca-
pacity exhibits a boson peak.

The answer to the first conundrum follows naturally from
our result that there is a frequency regime of small and con-
stant diffusivity. As shown in Sec. VI, the plateau in the
diffusivity above w, gives rise to a linear increase in thermal
conductivity above kzT,;~#fw, Similarly, the vanishing of
the density of states at wp,, leads to saturation of «(7T) at
high kzT>#hw,,,. Thus, the transport crossover frequency
sets the high-temperature limit of the plateau in x(7), while
the maximum allowed frequency sets the temperature at
which «(T) saturates to its final high-temperature value.

The answer to the second conundrum follows directly
from the observation that w;=~w", since the high-
temperature limit of the plateau in «(7) is kzT,;~hw, and the
boson peak temperature is kgTpp~hw®. Therefore,

Our results were obtained for a special system in which
spheres interact via finite-ranged repulsions. Nonetheless, it
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has been argued theoretically [47] and shown numerically
[61] that packings of spheres interacting via Lennard-Jones
interactions, which are attractive at long distances, behave
much as compressed packings of repulsive spheres and that
the boson peak frequency shifts upwards with increasing
density in such systems. Indeed, it was found that the w” is
determined primarily by the repulsive interactions that come
into play because the systems are held at high densities by
the attractions. Thus, even systems with attractions display a
boson peak corresponding to the onset of anomalous modes,
which should lead to a transport crossover as well.

It has also been shown that packings of ellipsoids [70]
display boson peaks corresponding to the onset of anomalous
modes that are similar in character to those for spheres. For
ellipsoids, the boson peak frequency is controlled by much
the same physics as for spheres; it depends on the coordina-
tion number as in Eq. (36).

Another class of systems, network glasses, appears at first
glance to be very different from our model repulsive sphere
packings. However, the unstressed models that were the
main focus of this paper can be described as points (corre-
sponding to the centers of spheres) connected by unstretched
springs. Such networks bear some resemblance to network
glasses, which are held together by covalent attractions. We
include only central forces, but the counting of constraints
has been shown to be key to network glasses with bond-
bending forces as well [71,72]. The connection between har-
monic spring networks and covalent network glasses has
been discussed in more detail in Refs. [47,73].

In summary, our results suggest that two generic features
of amorphous solids, the rise of the thermal conductivity
with temperature above a plateau and the coincidence of the
plateau temperature with the boson peak temperature, can be
traced to the presence of strongly scattered vibrational modes
with constant, minimal diffusivity. In the amorphous pack-
ings of soft spheres considered in our study, the unjamming
transition controls the frequency onset of these anomalous
vibrational modes in the manner of a critical point.
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