John von Neumann Institute for Computing NIC

The IBM eServer pSeries 690 as a
Research Instrument for Computer Scientists

Guido Juckeland, Michael Kluge,
Ralph Miuller-Pfefferkorn, Wolfgang E. Nagel,
and Bernd Trenkler

published in

NIC Symposium 2006 ,

G. Munster, D. Wolf, M. Kremer (Editors),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 32, ISBN 3-00-017351-X, pp. 315-322, 2006.

© 2006 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume32

https://core.ac.uk/display/35010068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The IBM eServer pSeries 690 as a Research Instrument
for Computer Scientists

Guido Juckeland, Michael Kluge, Ralph Muller-Pfefferkor n,
Wolfgang E. Nagel, and Bernd Trenkler

Technische Universitat Dresden
Center for Information Services and High Performance Cdmgu
01062 Dresden, Germany
E-mail: {Guido.Juckeland, Michael.Kluge,
Ralph.Mueller-Pfefferkorn, Wolfgang.Nagel, Bernd. kien} @tu-dresden.de

1 Introduction

Currently, there is quite a number of different system dechiires of HPC systems avail-
able on the market. Often, details of the complex systemm fitee hardware to the op-
erating system - determine the performance of an applicatioa specific architecture.
Examples for such small but important details are the cadmichy or the operating
system’s scheduling algorithms.

We tested and analyzed some features of the IBM p690 systéme &brschungszen-
trum Jilich to help users and administrators in the ansigbtheir applications and ma-
chine behavior, thus to optimize performance and systeraweh(sections 2, 3 and 4).

Furthermore, the programming paradigms applied in pdigiglications introduce an
overhead and can be a potential source of performance |oBs. a4 a widely used stan-
dard, needs strict rules to be adopted by the developerx&mgle in the communication
between the parallel processes. Assisting the programmikeiprocess of MPI problem
detection can thus be of invaluable help (section 5).

2 Examination of the Scheduling Properties on the IBM p690 wh
the PARbench Environment

Benchmarking in the field of HPC is mostly realized with spégrograms which run
separately on the system. However, utilization of expenksardware quite often requires
running multiple programs on the machine simultaneoustigégmultiprogramming mode.
Competition for resources, runtime conflicts and sometieves: scheduling problems are
the consequences. The goal of our study has been to measuretthvior of the machine
when workloads compete.

2.1 PARbench

The PARbench Benchmark System was developed at Forschamigan Jilich in the

early 90's. Over the last years, it was enhanced and portedatny parallel machines
by our research group at Technische Universitat DresdaRbBnch enables the simula-
tion of virtually every workload the user might have in minadaspecifies. It is able to

315

execute many benchmark programs in parallel and record ltleéavior with regards to
time flow and several other parameters. OpenMP is used astiteot for parallelization
to support parallel jobs within a chosen benchmark workload

2.2 A Selection of Tests

The IBM p690 system used for these tests was running AlX 5isider5.2 as the operating
system. The system consists of SMP nodes with 32 processtirs huilding block for the
whole cluster. It uses a thread based scheduling systenpwidifity queues (256 stages).
The scheduling algorithm is a fair round robin algorithmhwitynamic priorities where
each processor has its own queue. There also exists ond gloehge for all processors.
However, this queue must be explicitly activated as it ovaes the system of local queues.

As part of our activities, we have run many different workdedo investigate several
aspects of the machine. Here, we will concentrate on onavteste we have looked at the
situation of parallel jobs running in a multiprogramming/ganment. Further results can
be found if%12,

2.3 Results

The test scenario mentioned above is a situation where 32gré&gl jobs (CPU time: each
job is running for 100 seconds) are concurrently generaiatptetely filling one node with
32 CPUs for 100 seconds. This is an ideal situation where tilization is about 100%.
This workload is kept constant now but every second groumof fobs is executed as a
parallel job using OpenMP as the parallelization paradigatk job uses 4 threads). The
result is indicated in figure 1.

output_data 80.dat: Jump AIX 5.2 27.09.2004 12:42
Total-time 3253.37s | User-time 3201.44s 98.40% | L L0 gos
System-time 13.78s .42%
—ti Wait-time 25.77s
Bench-time 101678 M1 qle—time 38.15s 1.17%
BPO01 [000 | ! ! | O user-time
BP002 | |
BP003 i i B system-time
BP004 i i
BP005 : i | B Wait-time
BPO0G ; ;
BPO07 :
BP00B :
P009 B
P010 :
PO11 :
P012 :
P013 :
P014 B
P015 i
BP016 :
BPO17 :
BPO18 :
BP019 TRRRXRZR] :
P020 :
P021 !
P022 :
P023 B
P024 |
P025 [o I
P026 b
BP027 g
BP028 g
BP029 :
BP030 :
BPO31 :
BP032 :
0 50 100 150 200 250

Figure 1. PARbench experiment with 16 jobs with 4 thread$eem 16 serial jobs running on 32 processors
using the global queue.

316

It clearly shows that the parallel jobs finished earlierdaétbout 60 seconds, left end
of the overlapped pattern) — which means that in the avetremetave got more than one
CPU allocated over time. The sequential jobs ended aftentab#0 seconds (right end
of the bar). So far, these results are not completely stmgriand are acceptable. The
work done by each job, however, has been kept constant. Oatliee hand, it clearly
can be seen that the parallel jobs were accounted for onlyta@ttoseconds (right end of
the bar for the parallel jobs) — which suggests that they mataised the full CPU time
they have used before. At the same time, the sequential jebs accounted for more
than 115 CPU seconds. In sum, the total accounted CPU time atastant at 3200 CPU
seconds (32 times 100 seconds). These different user tanesduential and parallel jobs
indicate shortcomings in the accounting system where CR# tised by the parallel jobs
is accounted for the sequential ones. This discovery has teported to IBM and is still
under examination.

3 BenchIT

Performance analysis of computer systems is an interelstinguite challenging task. A
first approach is given by standard benchmarks and theiltsesailable on-line for a wide
variety of computer systems (e.g. LINPAEKor SPEC®). Own measurements normally
require some detailed knowledge of the system architeatulenost of the other machine
components. Nevertheless, there are plenty of optionseftiing measured performance
results which are inconsistent, unreliable, and sometienes incorrect. However, such
results are sometimes used to choose the system archét@cthe next procurement.

With BenchIT we want to improve the measurement and the cdsgraof archived
performance data. BenchlT offers a uniform and flexible iacture for the measurement
and presentation of such d&ta®. BenchlIT consists of two parts for the measurement and
the presentation of performance data.

The BenchIT main kernel driver initiates and controls th&grenance measurement.
It repeatedly calls the measurement kernel which implemanneasurement algorithm
with varying problem sizes (e.g. vector sizes or matrix disiens). When the processing
of the kernel is done with all problem sizes (or a time limitéached) the data is analyzed,
outliers are corrected, and all information is written iatoesult file.

The results of a BenchIT measurement run are written intaia pISClI file. Itis clear
that the result file has also to contain information aboutntieasurement environment as
well as the system architecture, since only the result filgpisaded to the BenchIT web
server. Only with this additional information the measuestrbecomes comparable.

The BenchIT web server fitt p: // www. benchi t. or g) is the key element in the
data analysis process. It offers sharing files with diffeteser groups, therefore, it enables
the user to compare his results with the ones of colleaguasyother BenchIT user.

The assembly of plots occurs in steps where all available idafiltered in order to
contain just the results the user wishes to see. The datasempted using gnuplot — parts
of the website are therefore a mere front end to make all grioptions available. Plots are
shown online or are exported in png, eps or emf format foidicig them in presentations
as well as in articles. Furthermore, plots can be storedyessessed, and postprocessed.

One of the main design goals in the development of BenchlToitapility between
different platforms. Real portability problems arise imewlering the main kernel driver

317

Text-based Tools Graphical Tools

Interactive Measurement
Setup

(set of shell scripts)

Quickview
(plots local results)

BCARE - The BenchIT
Compiling and Run
Environment

(configures measurements,
executes measurements)

BIG - The BenchIT GUI
(configures measurements,
executes measurements, displays
results)

BenchIT
Main Kernel
Driver

BenchlT - WebServer

(plots results, allows communication between users)

Figure 2. BenchIT components

since the measurements are to run on a large variety of piedfand operating systems.
The greatest common denominator among all those systemsteebe a shell, a com-

piler, and some degree of POSIX-compatibility. Thereftihe, whole main kernel driver

is steered by a set of shell scripts invoking the system clemip) for each measurement
run and kernel. Some of the results obtained on the IBM p68®edound on our website

http://ww. benchit. org.

4 EP-Cache: Optimizing Cache Access — Compiler Tests and
Source-To-Source Transformations

Usually, a developer focuses on implementing a correctparagvhich solves a problem

by using an algorithm. Frequently, applications which dbtake the cache hierarchy of

modern microprocessors into account achieve only a snaaliém of the theoretical peak

speed. Fine-tuning a program for better cache utilizatias lecome an expensive and
time consuming part of the development cycle. One way tontipé the cache usage of
applications are source-to-source transformations gfdod here are a number of known
transformations that improve data locality by reusing thtadn the cache, such as loop
interchange, blocking and unrolling.

Modern compilers claim to use loop transformations in coglintization. In the EP-
Cache project (funded by the BMBF contract number 01IRBGhewve tested three FOR-
TRAN90 compilers (IBM xIf for AIX V8.1.Z, Intel ifc 7.72 and SGI MIPSpro 7.3 for
loop transformations. In addition, the same source codeowtimized manually.

Our measurements (see figure 3 for two compilers) demoadtnat the capabilities
of the tested FORTRAN compilers to optimize cache behavéoy.vOnly MIPSpro7 is
able to automatically optimize sequential code in such athaythe resulting speedup is

318

\ IBM xIf V8.1.1 FORTRAN compiler, IBM Regatta Power4

SGI MIPSpro 7.3 FORTRAN compiler, SGI Origin 3800

Z 8o Z o
g E sequential: -O3 g L sequential: -O3
Rl (o] = L L sequential: loop interchange = [sequential: loop interchange
c OF c |
2 C sequential: i [¢ on: / 2 50— additional optimization
60— 4 threads: -03 r 4 threads: -03
E 4 threads: loop interchange '/ 40; 4 threads: loop interchange
50; 4 threads: additional optimi) A/\ rC 4 threads: additional optimizations
40F /v 30
301 N £
E /‘l 20~
20F £
E 10F
10F % E
E JIPRRSTEY L .
PSR B IS s €=vev IS o M ESES I P S ot PRIVt P AP R
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
matrix size matrix size

(@)

(b)

Figure 3. Runtime as function of the matrix dimension (a) dBM Regatta p690 system with IBM’s xIf for

AIX FORTRAN V8.1.1 compiler; the measurement curves of #hie manually optimized parallel codes are on

top of each other and (b) the SGI Origin 3800 with the MIPSpB®FRORTRAN compiler

comparable with a manual optimization. In the case of palr@penMP processing none

of the compilers can improve the original source code.
Currently, the only way to deal with cache access probleniSORTRAN programs
seems to be manual optimizations, like loop transformatioklowever, there are three

drawbacks in a manual optimization: it is time consumingoeprone, and can become

quite complicated.

GOOF! - Optimization Tool for Fortran

File Edit Yiew Help

5] sgauss.f | -unnamed
n=offset+nd¥stepsize

Figure 4. Screenshot of GOOFI with original and transforreedrce files and the transformation selection win-

dow

minl=hugeminll
naxl=0
do m=1,5

Time=0Time(TIMEARRAY)

call init_mat(h,naxsize,maxsize, b, maxsize, x, naxg

1
LTRAS INTERCHAMNGE 1
do i=1,n-1,1

minl=hugeminly
naxl=0
do m=1,5

call init_mat(a,naxsize,maxsize, b, maxsize,

Time=0Time (TIMEARRAY)

o j=1,n [Blocki
b(i)=bi)-
do k=i+l,n|

ACT, k)=
end do
end do

end do

wr)=hin) /A,

do i=n-1,1,-1

#(1)=h(1}
do j=i+l,n
#{1)=x (1)~

[Split
[Unroll

ng

[Fission
[} Fusion
[} Interchange
[Reverse

B Normalize

W Delete adion

end do
#{1 =1 /A

[* Do Transformation

Strg-T

end do

Time=DTime (TIMEARRA]

Save source File
& Save source File as ...

do J=1,N
do I=1,N-1,1
b(3)=b(id-b(i)* (AT, 1)/A(1,1))
do k=i4l,n

ACT K)=ACT, K)=(A(T.T0/R01,100"

end do
end do
end do
x(ni=h{n)/ AN, ny
o i=n-1,1,-
#(i)=hii}
do j=i+1,n
#(1)=x(13-A01,30%x (73
end do
#(1)=n(13/801,1)
end do

ele] Ao (Slm~]

minl=min{ninl, TIHES @ Close

window

maxl=max{max1, TIMEARRBTTL]J
7

Time=DTime{TIMEARRAYY
minT=mingminl, TIMEARRAY{1))
maxl=max(maxl, TIMEARRAY (1))

le

werbose

TrafoDoSingleTransform: INTERCHAMNGE 1 found at line 26 !

319

Therefore, we have developed a tool to assist developepimizing their FORTRAN
applications: loop transformations are performed autaally on user request. GOOFI
(Graphical Optimization Of Fortran Implementations) dd®s a graphical user interface
(figure 4) where the user loads his/her source code (leftafitlee window) and requests
transformations for a loop (by a mouse click). By another sgoelick, he/she receives the
transformed code, which appears up in the right window ol screen, making direct
visual comparison easily possible. The entire results e$ahstudies and developments
were published at EuroPar 2004

5 Automatic Scalability Analysis for MPI Programs

Identifying performance problems can be a time consumirthdifficult task especially
for parallel applications.

5.1 Automatic MPI Overhead Detection

Within the MPI Standard, most of the communication betwédengrocesses running in
parallel is performed by simply exchanging messages betieese processes. To un-
derstand what is going on during an execution of an MP| prograany tools have been
developed. Typically, these tools keep track of the messagtain a system and are able
to show a timeline of the program activities as well as messaatistics and other useful
data after the program has terminated. There are many ¢tuessarch activities trying to
analyze the behavior of an application automatically.

One of the activities at the Technische Universitat Drasdéhin this research area
during 2004 was to automatically find the lines within thersewcode of an MPI program
causing unnecessary waiting time as well as scalabilitplero$=2. For achieving this
goal, it was necessary to define a 'normal behavior’ for a twalin MPI function. If a
communication function is called multiple times under tame conditions it is most likely
that the execution time for this MPI function call varieseewnder ideal conditions on a
dedicated system (see figure 5). To be able to distinguiskeset the normal variations
that will happen everytime from those variations that anesed by a bad parallelization
scheme within the users application, those normal variativave to be defined. Once
this is accomplished, each call to an MPI function can bednsgd, and thereupon the
execution time can be named within or beyond the normal tranis.

Our approach is based on the assumption that the variatimsenaed by calling the
same function multiple times under ideal conditions argstteally distributed. By taking
a quantile abové.9, the value for a maximum time for a call to an MPI function isifial.

At this point we are able to detect unnecessary waiting tintieinvan MP1 application.
By mapping those waiting times back to the source code Ié¢heluser is given helpful
information about his program.

5.2 MPI Scalability Analysis

The second part of this project was dedicated to the automi@téction of scalability prob-
lems. An application that has the same input data but runsvorptocessors instead on
one processor is expected to finish within about half theimet However, the amount

320

Repeated MPI_Send() with 1 Byte Histogram of MPI_Send() with 1 Byte

12 60 T
» 10 2 50
g :
S 8 g 0
° \ 2
g 6 il ds L | I 2 4
: g
£ s
s 4 g 20
£ £
=2 2 10
0 L -
0 20 40 60 80 100 120 140 160 180 200 6 8 10 12 14 16 18 20
Index of MPI_Send() within the trace file Class number
@) (b)

Figure 5. Example of normal variations of a repeated MBhd() with a small message size (a) and the histogram
by using a class width ¢f00ns. Depending on the (user selectable) quantile the methddwidmatically select
a value around 9 Milliseconds as the acceptable maximumdal & this MPI function call with this attributes.

of work within an application that actually can be parafleti limits the scalability of an
application. How an application performs during a pargilelgram run is also determined
by the amount of communication and synchronization betwitberprocesses. How the
amount of communication changes with increasing numberafgssors depends on the
algorithm used. If the communication increases faster timaar it will result in a scala-
bility problem. This working thesis is used to map the amafrdtommunication back to
the line number within the source code of a program where pipeogriate MPI function
has been called. By fitting a quadratic polynomial to thesalmers (one number for each
program run) at the source code level it can be expectedhbdattor for the quadratic
term in the polynomial is close to zero. By identifying the MRlls in the source code
where this is not true, a possible scalability issue has Hetacted.

An architecture for a tool implementing the ideas mentioaledve has been proposed
and implemented in a prototype. By applying the tool to sonfCABenchmarks it was
possible to find possible scalability problems and unneggsgaiting time automatically.

Acknowledgments

We want to thank the German Federal Ministry of Education Redearch (BMBF) for
the funding of the project EP-Cache (contract 011RB04).

We thank the Forschungszentrum Julich (John von Neumastitute for Comput-
ing) for giving us the possibility to use their computingifaies (e.g. IBM Regatta p690
"Jump”) for our research and development. The fact thatyltesms is built from 32 CPU
SMP Clusters makes it easy to get reproducible results whirg gherformance analysis.
By allocation of one of the clusters in the system one user 82tfprocessors exclusively.
So the noise usually generated from a multi user mode isipadigtinexistent. This makes
the machine a valuable and easy-to-use research instriionentomputer scientist.

321

References

A WNBE

10.

11.

12.

13.

14.
15.
16.

. XL Fortran for AIXV8.1.1, IBM (2003).

. Intel Fortran Compiler for Linux Systems, Intel Corpavat(2003).

. MIPSpro Fortran 90, Silicon Graphics Inc. (2003).

. R. Muller-Pfefferkorn, W.E. Nagel and B. Trenkl@ptimizing Cache Access: A Tool

for Source-To-Source Transformations and Real-Life Cenpests Euro-Par 2004
- Parallel Processing , Springer, LNCS 3149, 72—-81 (2004).

. J. Blum; Transit: Ein interaktives Werkzeug zur Prograsptimierung mittels Code-

Transformationen, FZ Julich, Technical report No. J883, November 1996.

. Michael Kluge; Statistische Analyse von ProgrammspudienMPI-Programme.

Diploma thesis, December 2004.

. Michael Kluge, Andreas Knuipfer and Wolfgang E. Nage#tiStical Methods for Au-

tomatic Performance Bottleneck Detection in MPI Based Rnog InComputational
Science - ICCS 2005, Volumgiages 3307-337, 2005.

. Michael Kluge, Andreas Knupfer and Wolfgang E. Nagel;oitedge Based Auto-

matic Scalability Analysis and Extrapolation for MPI Pragrs In11th International
Euro-Par Conference 2003.76-184, 2005.

. Sebastian Boesler; Performance-Analyse von Hochiegstechnern im Multipro-

gramming-Betrieb: Untersuchungen auf der SGI Origin. diph thesis, Technische
Universitat Dresden, December 2001.

Heiko Dietze; Das PARbench-System: Untersuchungen Scineduling von par-
allelen Programmen auf der IBM p690. Diploma-Thesis, Tésdire Universitat
Dresden, November 2004.

Wolfgang E. Nagel and Markus A. Linn; Benchmarking petgrograms in a mul-
tiprogramming environment: The PARbench system, 1991.

H. Dietze, W.E. Nagel and B. Trenkler; Scheduling isare8M p690: Performance
Analysis with the PARbench Environment. accepted for mation inProceedings
of Parallel Computing ParCo 2003/alaga, Spain.

G. Juckeland, S. Borner, M. Kluge, S. Kolling, W. E. Mid. Pfluger, H. Roding,
S. Seidl, T. William, and R. Wloch; BenchIT — Performance Bl@@ment and Com-
parison for Scientific Applications. IRroceedings of the ParCo 200Bresden,
Germany, ISBN 0-444-51689-1.

LINPACK. htt p: //ww. net | i b. org/ benchmark/ .

The SPEC Benchmarkit t p: / / www. spec. or g.

G. Juckeland, M. Kluge, W.E. Nagel and S. Pflugdterformance Analysis with
BenchlT: Portable, Flexible, Easy to Usén Proc. of QEST 2004, September 27 -
30, 2004, Enschede, The Netherlands, IEEE Computer Sagarelisr Number P2185,
ISBN 0-7695-2185-1.

322

