
John von Neumann Institute for Computing

The IBM eServer pSeries 690 as a
Research Instrument for Computer Scientists

Guido Juckeland, Michael Kluge,
Ralph Müller-Pfefferkorn, Wolfgang E. Nagel,

and Bernd Trenkler

published in

NIC Symposium 2006 ,
G. Münster, D. Wolf, M. Kremer (Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 32, ISBN 3-00-017351-X, pp. 315-322, 2006.

c© 2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/35010068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The IBM eServer pSeries 690 as a Research Instrument
for Computer Scientists

Guido Juckeland, Michael Kluge, Ralph Müller-Pfefferkor n,
Wolfgang E. Nagel, and Bernd Trenkler

Technische Universität Dresden
Center for Information Services and High Performance Computing

01062 Dresden, Germany
E-mail: {Guido.Juckeland, Michael.Kluge,

Ralph.Mueller-Pfefferkorn, Wolfgang.Nagel, Bernd.Trenkler}@tu-dresden.de

1 Introduction

Currently, there is quite a number of different system architectures of HPC systems avail-
able on the market. Often, details of the complex system - from the hardware to the op-
erating system - determine the performance of an application on a specific architecture.
Examples for such small but important details are the cache hierarchy or the operating
system’s scheduling algorithms.

We tested and analyzed some features of the IBM p690 system atthe Forschungszen-
trum Jülich to help users and administrators in the analysis of their applications and ma-
chine behavior, thus to optimize performance and system behavior (sections 2, 3 and 4).

Furthermore, the programming paradigms applied in parallel applications introduce an
overhead and can be a potential source of performance loss. MPI, as a widely used stan-
dard, needs strict rules to be adopted by the developer, for example in the communication
between the parallel processes. Assisting the programmer in the process of MPI problem
detection can thus be of invaluable help (section 5).

2 Examination of the Scheduling Properties on the IBM p690 with
the PARbench Environment

Benchmarking in the field of HPC is mostly realized with special programs which run
separately on the system. However, utilization of expensive hardware quite often requires
running multiple programs on the machine simultaneously inthe multiprogramming mode.
Competition for resources, runtime conflicts and sometimeseven scheduling problems are
the consequences. The goal of our study has been to measure the behavior of the machine
when workloads compete.

2.1 PARbench

The PARbench Benchmark System was developed at Forschungszentrum Jülich in the
early 90’s. Over the last years, it was enhanced and ported tomany parallel machines
by our research group at Technische Universität Dresden. PARbench enables the simula-
tion of virtually every workload the user might have in mind and specifies. It is able to

315

execute many benchmark programs in parallel and record their behavior with regards to
time flow and several other parameters. OpenMP is used as the concept for parallelization
to support parallel jobs within a chosen benchmark workload.

2.2 A Selection of Tests

The IBM p690 system used for these tests was running AIX 5L Version 5.2 as the operating
system. The system consists of SMP nodes with 32 processors as the building block for the
whole cluster. It uses a thread based scheduling system withpriority queues (256 stages).
The scheduling algorithm is a fair round robin algorithm with dynamic priorities where
each processor has its own queue. There also exists one global queue for all processors.
However, this queue must be explicitly activated as it overwrites the system of local queues.

As part of our activities, we have run many different workloads to investigate several
aspects of the machine. Here, we will concentrate on one testwhere we have looked at the
situation of parallel jobs running in a multiprogramming environment. Further results can
be found in10,12.

2.3 Results

The test scenario mentioned above is a situation where 32 sequential jobs (CPU time: each
job is running for 100 seconds) are concurrently generated completely filling one node with
32 CPUs for 100 seconds. This is an ideal situation where the utilization is about 100%.
This workload is kept constant now but every second group of four jobs is executed as a
parallel job using OpenMP as the parallelization paradigm (each job uses 4 threads). The
result is indicated in figure 1.

� � � � �� � � � �� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �� � � � �

� � � � �	 	 	 	 	

� � � � � �� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �� � � � � �� � � � �� � � � �� � � � �� � � � �� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �� � � � �� � � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

output_data_80.dat: Jump AIX 5.2 27.09.2004 12:42

User−time3253.37s

Idle−time

System−time

101.67s
38.15s

13.78s

3201.44s 98.40%

.42%

1.17%

3240.99s

25.77s

Real−time

Wait−time

Total−time

Bench−time

0 50 100 150 200 250

BP001
BP002
BP003
BP004
BP005
BP006
BP007
BP008
BP009
BP010
BP011
BP012
BP013
BP014
BP015
BP016
BP017
BP018
BP019
BP020
BP021
BP022
BP023
BP024
BP025
BP026
BP027
BP028
BP029
BP030
BP031
BP032

 !" " " " "# # # # # $%& & & & &' ' ' ' ' ()* * * * * *+ + + + + +, ,-. . . ./ / / /

012 2 2 23 3 3 3 4 45 56 6 6 6 6 67 7 7 7 7 89: : : : : :; ; ; ; ; <=> > > > >? ? ? ? ?

@AB B B B BC C C C CD D
D D
E E
E EF F F F F F

F F F F F F
G G G G G G
G G G G G G

H HIJ J J JK K K K LMN N N N NO O O O O

PQR R R R R RS S S S ST TUV V V V VW W W W W X
X
Y
YZ Z Z Z Z Z

Z Z Z Z Z Z
[[[[[[
[[[[[[

\]^ ^ ^ ^ ^_ _ _ _ _

à

User−time

System−time

Wait−time

Figure 1. PARbench experiment with 16 jobs with 4 threads each and 16 serial jobs running on 32 processors
using the global queue.

316

It clearly shows that the parallel jobs finished earlier (after about 60 seconds, left end
of the overlapped pattern) – which means that in the average they have got more than one
CPU allocated over time. The sequential jobs ended after about 140 seconds (right end
of the bar). So far, these results are not completely surprising and are acceptable. The
work done by each job, however, has been kept constant. On theother hand, it clearly
can be seen that the parallel jobs were accounted for only about 85 seconds (right end of
the bar for the parallel jobs) – which suggests that they havenot used the full CPU time
they have used before. At the same time, the sequential jobs were accounted for more
than 115 CPU seconds. In sum, the total accounted CPU time stays constant at 3200 CPU
seconds (32 times 100 seconds). These different user times for sequential and parallel jobs
indicate shortcomings in the accounting system where CPU time used by the parallel jobs
is accounted for the sequential ones. This discovery has been reported to IBM and is still
under examination.

3 BenchIT

Performance analysis of computer systems is an interestingbut quite challenging task. A
first approach is given by standard benchmarks and their results available on-line for a wide
variety of computer systems (e.g. LINPACK14 or SPEC15). Own measurements normally
require some detailed knowledge of the system architectureand most of the other machine
components. Nevertheless, there are plenty of options for getting measured performance
results which are inconsistent, unreliable, and sometimeseven incorrect. However, such
results are sometimes used to choose the system architecture in the next procurement.

With BenchIT we want to improve the measurement and the comparison of archived
performance data. BenchIT offers a uniform and flexible architecture for the measurement
and presentation of such data13,16. BenchIT consists of two parts for the measurement and
the presentation of performance data.

The BenchIT main kernel driver initiates and controls the performance measurement.
It repeatedly calls the measurement kernel which implements a measurement algorithm
with varying problem sizes (e.g. vector sizes or matrix dimensions). When the processing
of the kernel is done with all problem sizes (or a time limit isreached) the data is analyzed,
outliers are corrected, and all information is written intoa result file.

The results of a BenchIT measurement run are written into a plain ASCII file. It is clear
that the result file has also to contain information about themeasurement environment as
well as the system architecture, since only the result file isuploaded to the BenchIT web
server. Only with this additional information the measurement becomes comparable.

The BenchIT web server (http://www.benchit.org) is the key element in the
data analysis process. It offers sharing files with different user groups, therefore, it enables
the user to compare his results with the ones of colleagues orany other BenchIT user.

The assembly of plots occurs in steps where all available data is filtered in order to
contain just the results the user wishes to see. The data is presented using gnuplot – parts
of the website are therefore a mere front end to make all gnuplot options available. Plots are
shown online or are exported in png, eps or emf format for including them in presentations
as well as in articles. Furthermore, plots can be stored, easily accessed, and postprocessed.

One of the main design goals in the development of BenchIT is portability between
different platforms. Real portability problems arise in considering the main kernel driver

317

BenchIT

Main Kernel

Driver

Graphical Tools
Text-based Tools

Quickview

(plots local results)

BIG - The BenchIT GUI

(configures measurements,

executes measurements, displays

results)

Interactive Measurement

Setup

(set of shell scripts)

BCARE - The BenchIT

Compiling and Run

Environment

(configures measurements,

executes measurements)

BenchIT - WebServer

(plots results, allows communication between users)

Figure 2. BenchIT components

since the measurements are to run on a large variety of platforms and operating systems.
The greatest common denominator among all those systems seems to be a shell, a com-
piler, and some degree of POSIX-compatibility. Therefore,the whole main kernel driver
is steered by a set of shell scripts invoking the system compiler(s) for each measurement
run and kernel. Some of the results obtained on the IBM p690 can be found on our website
http://www.benchit.org.

4 EP-Cache: Optimizing Cache Access – Compiler Tests and
Source-To-Source Transformations

Usually, a developer focuses on implementing a correct program which solves a problem
by using an algorithm. Frequently, applications which do not take the cache hierarchy of
modern microprocessors into account achieve only a small fraction of the theoretical peak
speed. Fine-tuning a program for better cache utilization has become an expensive and
time consuming part of the development cycle. One way to optimize the cache usage of
applications are source-to-source transformations of loops. There are a number of known
transformations that improve data locality by reusing the data in the cache, such as loop
interchange, blocking and unrolling.

Modern compilers claim to use loop transformations in code optimization. In the EP-
Cache project (funded by the BMBF contract number 01IRB04) we have tested three FOR-
TRAN90 compilers (IBM xlf for AIX V8.1.11, Intel ifc 7.12 and SGI MIPSpro 7.33) for
loop transformations. In addition, the same source code wasoptimized manually.

Our measurements (see figure 3 for two compilers) demonstrate that the capabilities
of the tested FORTRAN compilers to optimize cache behavior vary. Only MIPSpro7 is
able to automatically optimize sequential code in such a waythat the resulting speedup is

318

matrix size
0 200 400 600 800 1000 1200 1400 1600

ru
n

tim
e

[s
]

0

10

20

30

40

50

60

70

80

IBM xlf V8.1.1 FORTRAN compiler, IBM Regatta Power4

sequential: -O3

sequential: loop interchange

sequential: additional optimizations

4 threads: -O3

4 threads: loop interchange

4 threads: additional optimizations

matrix size
0 200 400 600 800 1000 1200 1400 1600

ru
n

tim
e

[s
]

0

10

20

30

40

50

60

SGI MIPSpro 7.3 FORTRAN compiler, SGI Origin 3800

sequential: -O3

sequential: loop interchange

sequential: additional optimizations

4 threads: -O3

4 threads: loop interchange

4 threads: additional optimizations

(a) (b)

Figure 3. Runtime as function of the matrix dimension (a) on aIBM Regatta p690 system with IBM’s xlf for
AIX FORTRAN V8.1.1 compiler; the measurement curves of the two manually optimized parallel codes are on
top of each other and (b) the SGI Origin 3800 with the MIPSpro 7.3 FORTRAN compiler

comparable with a manual optimization. In the case of parallel OpenMP processing none
of the compilers can improve the original source code.

Currently, the only way to deal with cache access problems inFORTRAN programs
seems to be manual optimizations, like loop transformations5. However, there are three
drawbacks in a manual optimization: it is time consuming, error-prone, and can become
quite complicated.

Figure 4. Screenshot of GOOFI with original and transformedsource files and the transformation selection win-
dow

319

Therefore, we have developed a tool to assist developers in optimizing their FORTRAN
applications: loop transformations are performed automatically on user request. GOOFI
(Graphical Optimization Of Fortran Implementations) provides a graphical user interface
(figure 4) where the user loads his/her source code (left sideof the window) and requests
transformations for a loop (by a mouse click). By another mouse click, he/she receives the
transformed code, which appears up in the right window of thesplit screen, making direct
visual comparison easily possible. The entire results of these studies and developments
were published at EuroPar 20044.

5 Automatic Scalability Analysis for MPI Programs

Identifying performance problems can be a time consuming and difficult task especially
for parallel applications.

5.1 Automatic MPI Overhead Detection

Within the MPI Standard, most of the communication between the processes running in
parallel is performed by simply exchanging messages between these processes. To un-
derstand what is going on during an execution of an MPI program, many tools have been
developed. Typically, these tools keep track of the messages within a system and are able
to show a timeline of the program activities as well as message statistics and other useful
data after the program has terminated. There are many current research activities trying to
analyze the behavior of an application automatically.

One of the activities at the Technische Universität Dresden within this research area
during 2004 was to automatically find the lines within the source code of an MPI program
causing unnecessary waiting time as well as scalability problems6–8. For achieving this
goal, it was necessary to define a ’normal behavior’ for a callto an MPI function. If a
communication function is called multiple times under the same conditions it is most likely
that the execution time for this MPI function call varies, even under ideal conditions on a
dedicated system (see figure 5). To be able to distinguish between the normal variations
that will happen everytime from those variations that are caused by a bad parallelization
scheme within the users application, those normal variations have to be defined. Once
this is accomplished, each call to an MPI function can be inspected, and thereupon the
execution time can be named within or beyond the normal variations.

Our approach is based on the assumption that the variations observed by calling the
same function multiple times under ideal conditions are statistically distributed. By taking
a quantile above0.9, the value for a maximum time for a call to an MPI function is found.

At this point we are able to detect unnecessary waiting time within an MPI application.
By mapping those waiting times back to the source code level,the user is given helpful
information about his program.

5.2 MPI Scalability Analysis

The second part of this project was dedicated to the automatic detection of scalability prob-
lems. An application that has the same input data but runs on two processors instead on
one processor is expected to finish within about half the runtime. However, the amount

320

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
in

 m
ic

ro
 s

ec
on

ds

Index of MPI_Send() within the trace file

Repeated MPI_Send() with 1 Byte

 0

 10

 20

 30

 40

 50

 60

 6 8 10 12 14 16 18 20

N
um

be
r

of
 c

la
ss

 m
em

be
rs

Class number

Histogram of MPI_Send() with 1 Byte

(a) (b)

Figure 5. Example of normal variations of a repeated MPISend() with a small message size (a) and the histogram
by using a class width of500ns. Depending on the (user selectable) quantile the method will automatically select
a value around 9 Milliseconds as the acceptable maximum for acall to this MPI function call with this attributes.

of work within an application that actually can be parallelized limits the scalability of an
application. How an application performs during a parallelprogram run is also determined
by the amount of communication and synchronization betweenthe processes. How the
amount of communication changes with increasing number of processors depends on the
algorithm used. If the communication increases faster thanlinear it will result in a scala-
bility problem. This working thesis is used to map the amountof communication back to
the line number within the source code of a program where the appropriate MPI function
has been called. By fitting a quadratic polynomial to these numbers (one number for each
program run) at the source code level it can be expected that the factor for the quadratic
term in the polynomial is close to zero. By identifying the MPI calls in the source code
where this is not true, a possible scalability issue has beendetected.

An architecture for a tool implementing the ideas mentionedabove has been proposed
and implemented in a prototype. By applying the tool to some ASCI-Benchmarks it was
possible to find possible scalability problems and unnecessary waiting time automatically.

Acknowledgments

We want to thank the German Federal Ministry of Education andResearch (BMBF) for
the funding of the project EP-Cache (contract 01IRB04).

We thank the Forschungszentrum Jülich (John von Neumann Institute for Comput-
ing) for giving us the possibility to use their computing facilities (e.g. IBM Regatta p690
”Jump”) for our research and development. The fact that the systems is built from 32 CPU
SMP Clusters makes it easy to get reproducible results when doing performance analysis.
By allocation of one of the clusters in the system one user gets 32 processors exclusively.
So the noise usually generated from a multi user mode is practically inexistent. This makes
the machine a valuable and easy-to-use research instrumentfor a computer scientist.

321

References

1. XL Fortran for AIX V8.1.1, IBM (2003).
2. Intel Fortran Compiler for Linux Systems, Intel Corporation (2003).
3. MIPSpro Fortran 90, Silicon Graphics Inc. (2003).
4. R. Müller-Pfefferkorn, W.E. Nagel and B. Trenkler;Optimizing Cache Access: A Tool

for Source-To-Source Transformations and Real-Life Compiler Tests, Euro-Par 2004
- Parallel Processing , Springer, LNCS 3149, 72–81 (2004).

5. J. Blum; Transit: Ein interaktives Werkzeug zur Programmoptimierung mittels Code-
Transformationen, FZ Jülich, Technical report No. Jül-3302, November 1996.

6. Michael Kluge; Statistische Analyse von Programmspurenfür MPI-Programme.
Diploma thesis, December 2004.

7. Michael Kluge, Andreas Knüpfer and Wolfgang E. Nagel; Statistical Methods for Au-
tomatic Performance Bottleneck Detection in MPI Based Programs InComputational
Science - ICCS 2005, Volume I, pages 3307–337, 2005.

8. Michael Kluge, Andreas Knüpfer and Wolfgang E. Nagel; Knowledge Based Auto-
matic Scalability Analysis and Extrapolation for MPI Programs In11th International
Euro-Par Conference 2005, 176–184, 2005.

9. Sebastian Boesler; Performance-Analyse von Hochleistungsrechnern im Multipro-
gramming-Betrieb: Untersuchungen auf der SGI Origin. Diploma thesis, Technische
Universität Dresden, December 2001.

10. Heiko Dietze; Das PARbench-System: Untersuchungen zumScheduling von par-
allelen Programmen auf der IBM p690. Diploma-Thesis, Technische Universität
Dresden, November 2004.

11. Wolfgang E. Nagel and Markus A. Linn; Benchmarking parallel programs in a mul-
tiprogramming environment: The PARbench system, 1991.

12. H. Dietze, W.E. Nagel and B. Trenkler; Scheduling issueson IBM p690: Performance
Analysis with the PARbench Environment. accepted for publication inProceedings
of Parallel Computing ParCo 2005, Malaga, Spain.

13. G. Juckeland, S. Börner, M. Kluge, S. Kölling, W. E. Nagel, S. Pflüger, H. Röding,
S. Seidl, T. William, and R. Wloch; BenchIT – Performance Measurement and Com-
parison for Scientific Applications. InProceedings of the ParCo 2003, Dresden,
Germany, ISBN 0-444-51689-1.

14. LINPACK. http://www.netlib.org/benchmark/.
15. The SPEC Benchmarks.http://www.spec.org.
16. G. Juckeland, M. Kluge, W.E. Nagel and S. Pflüger;Performance Analysis with

BenchIT: Portable, Flexible, Easy to Use, In Proc. of QEST 2004, September 27 -
30, 2004, Enschede, The Netherlands, IEEE Computer SocietyOrder Number P2185,
ISBN 0-7695-2185-1.

322

