22,665 research outputs found

    Animal studies on Spacelab-3

    Get PDF
    The flight of two squirrel monkeys and 24 rates on Spacelab-3 was the first mission to provide hand-on maintenance on animals in a laboratory environment. With few exceptions, the animals grew and behaved normally, were free of chronic stress, and differed from ground controls only for gravity-dependent parameters. One of the monkeys exhibited symptoms of space sickness similar to those observed in humans, which suggests squirrel monkeys may be good models for studying the space-adaptation syndrome. Among the wide variety of parameters measured in the rats, most notable was the dramatic loss of muscle mass and increased fragility of long bones. Other interesting rat findings were those of suppressed interferon production by spleen cells, defective release of growth hormone by somatotrophs, possible dissociation of circadian pacemakers, changes in hepatic lipid and carbohydrate metabolism, and hypersensitivity of marrow cells to erythopoietin. These results portend a strong role for animals in identifying and elucidating the physiological and anatomical responses of mammals to microgravity

    The mean lives of some excited levels in nitrogen 1

    Get PDF
    Beam foil measurements of multiplet mean lives in nitrogen deca

    Entanglement-enhanced measurement of a completely unknown phase

    Full text link
    The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.Comment: 6 pages, 4 figure

    Quantum dots in graphene

    Full text link
    We suggest a way of confining quasiparticles by an external potential in a small region of a graphene strip. Transversal electron motion plays a crucial role in this confinement. Properties of thus obtained graphene quantum dots are investigated theoretically for different types of the boundary conditions at the edges of the strip. The (quasi)bound states exist in all systems considered. At the same time, the dependence of the conductance on the gate voltage carries an information about the shape of the edges.Comment: 4 pages, 3 figure

    Development of a New Multiplex Real-Time RT-PCR Assay for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Detection.

    Get PDF
    This research describes the development of a new multiplex real-time RT-PCR test for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with primers designed to amplify a 108 bp target on the spike surface glycoprotein (S gene) and a hydrolysis TaqMan probe designed to specifically detect SARS-CoV-2. The limit of detection (LOD) and clinical performance of this new assay were evaluated. A LOD study with inactivated virus exhibited performance equal to the modified CDC assay, with a final LOD of 1301 ± 13 genome equivalents/mL for the Northwell Health Laboratories laboratory-developed test (NWHL LDT) versus 1249 ± 14 genome equivalents/mL for the modified CDC assay. In addition, a clinical evaluation with 270 nasopharyngeal swab specimens exhibited 98.5% positive percent agreement and 99.3% negative percent agreement compared with the modified CDC assay. The NWHL LDT multiplex design allows testing of 91 patients per plate, versus a maximum of 29 patients per plate on the modified CDC assay, providing the benefit of testing significantly more patients per run and saving reagents, during a time when both of these parameters are critical. The results show that the NWHL LDT multiplex assay performs as well as the modified CDC assay but is more efficient and cost-effective and can be used as a diagnostic assay and for epidemiologic surveillance and clinical management of SARS-CoV-2

    Spatial Interference Cancelation for Mobile Ad Hoc Networks: Perfect CSI

    Full text link
    Interference between nodes directly limits the capacity of mobile ad hoc networks. This paper focuses on spatial interference cancelation with perfect channel state information (CSI), and analyzes the corresponding network capacity. Specifically, by using multiple antennas, zero-forcing beamforming is applied at each receiver for canceling the strongest interferers. Given spatial interference cancelation, the network transmission capacity is analyzed in this paper, which is defined as the maximum transmitting node density under constraints on outage and the signal-to-interference-noise ratio. Assuming the Poisson distribution for the locations of network nodes and spatially i.i.d. Rayleigh fading channels, mathematical tools from stochastic geometry are applied for deriving scaling laws for transmission capacity. Specifically, for small target outage probability, transmission capacity is proved to increase following a power law, where the exponent is the inverse of the size of antenna array or larger depending on the pass loss exponent. As shown by simulations, spatial interference cancelation increases transmission capacity by an order of magnitude or more even if only one extra antenna is added to each node.Comment: 6 pages; submitted to IEEE Globecom 200

    Structure of Acculturation Attitudes and their Relationships with Personality and Psychological Adaptation: A Study with Immigrant and National Samples in Germany

    Get PDF
    This contribution deals with the structure of acculturation attitudes and their relationship with personality dimensions and psychological adaptation. Based on two German samples—an immigrant and a national one— evidence suggests that four independent factors are underlying acculturation styles as assessed with the Acculturation Attitudes Styles (AAS). Integration, Assimilation, Separation, and Marginalization are independent, lowly correlated constructs and represent distinct modes of coping with acculturation demands. Analyses also demonstrate that each acculturation factor shows a specific pattern of personality characteristics, including basic temperament dimensions, cognitive styles, coping, and components of emotional intelligence. Finally, the four acculturation styles can predict psychological adaptation such as wellbeing, happiness, etc. Integration is the most adaptive acculturation strategy, whereas Separation and Marginalization most strongly predict negative outcomes

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    Beam-foil spectrum of nitrogen at ultraviolet wavelengths

    Get PDF
    Spectrum analysis on foil excited nitrogen beam during acceleration at ultraviolet wavelength

    Chirality in Quantum Computation with Spin Cluster Qubits

    Full text link
    We study corrections to the Heisenberg interaction between several lateral, single-electron quantum dots. We show, using exact diagonalization, that three-body chiral terms couple triangular configurations to external sources of flux rather strongly. The chiral corrections impact single qubit encodings utilizing loops of three or more Heisenberg coupled quantum dots.Comment: 5 pages, 2 figure
    • …
    corecore