MSA CR 106834

Beam-Foil Spectrum of Nitrogen at ultraviolet Wavelengths*
H. G. Berry, W. S. Bickel, J. Desesquelles, ${ }^{\dagger}$ S. Bashkin
and
R. M. Schectman
Department of Physics, University of Arizona, Tucson, Arizona 85721
$N G K-03-\sigma \sigma 2-017$
Abstract

We present an analysis of the spectra seen in a foil-excited nitrogen beam accelerated by Van de Graaff accelerators. Atomic and molecular beans were accelerated to energies of 0.25 to 2.0 MeV to observe spectra in the wavelength region $\lambda 1050 \AA$ - $\lambda 2600 \AA$. Atomic nitrogen was accelerated at higher energies up to 5.5 MeV to study the wavelength region $\lambda 2000{ }^{\circ}-\lambda 5000^{\circ}$. Decay times of twenty-one of the stronger lines of IV II to $\mathrm{N} V$ in both these regions were measured.

CASE FILE COPY

INTRODUCTION

The beam-foil method ${ }^{1}$ of measuring atomic parameters through the study of the light emitted from electronic excited states has been often applied to nitrogen. ${ }^{1-9}$ All the above experiments detected radiation at wavelengths between $\lambda 2000 \AA$ and $\lambda 6000 \AA$. References 5,6 and 9 used photoelectric detection permitting accurate ($\pm 5 \%$) mean lives to be determined for some excited ion states, whereas photographic detection 2.1lowed only accurate wavelength studies for the remainder. Ionization states of some unidentified nitrogen lines were determined by Fink. ${ }^{10}$

We present here a natural extension of this work to the wavelength region below $2000 \AA$ dow to $1050 \AA$, using photoelectric detection and beam energies of $0.25-2.0 \mathrm{MeV}$ Also, with a 6 MV Van de Graaff, we have made measurements in the region $\lambda 2000-5000 \AA$ at higher energies. Mean life measurements have been made in both spectral regions, and the mean lives of 21 multiplets are given. Preliminary results were presented earlier. ${ }^{11,12}$

EXPERIMENT

A beam of nitrogen accelexated by a horizontal 2 MV Van de Graaff accelerator was magnetically selected to pass into a target chamber. The pressure in all parts of the system was $\leq 5 \times 10^{-6}$ torr. The beam was collimated by control slits approximately 0.5 cm apart and then passed through an 0.6 cm diameter, self-supported $10 \mu \mathrm{~g} / \mathrm{cm}^{2}$ carbon foil. Four such foils were mounted on a wheel which could be rotated about an axis parallel to the bean. Thus a new foil could be rotated into. the beam when one broke. The beam current of the order of I HA was
monitored with an unshielded Faraday cup connected to a current integrator. The cup and foil, at a fixed separation, could be moved by a screw along the beam.

Spectra were observed with a 1 meter McPherson spectrometer ($600 \mathrm{~L} / \mathrm{mm}$ grating blazed at $1500 \AA$ in first order) which looked at 90° at a 0.5 cm length of the beam. Wavelength scans were obtained with the appropriate photomultiplier attached to the exit slit of the spectrometer, the D.C. output being amplified and recorded on a strip-chart recorder. EMR photomultipliers $542-G$ and $541-F$ were used for the wavelength regions גI050-2000 \AA and $\lambda 1500-3000 \AA$ respectively. Decay time measurements for a particular spectral line were made by counting photomultiplier pulses for a fixed beam charge recorded by the current integrotor as the foil was moved in steps upstrean from the line of sight of the spectrometer.

The experimental arrangements for the 6 MV Van de Graaff were somewhat different. The vertical beam from the accelerator was bent 90° into a. horizontal direction. The beam then passed between control slits and, finally, into a chamber containing the carbon foils. Light emitted at approximately 90° to the beam was focused with a quartz lens onto the entrance slit of a Perkin-Elmer 1/3-meter grating spectrometer. Light from the exit slit was detected with a 54I-F ErR or a cooled IP28 photomultiplier. For decay time measurements, the foil remained fixed while the spectrometer was moved stepwise downstream from the foil. Pulse counting was used as above.

At the higher energies of $3-5.0 \mathrm{MeV}$ used on the 6 MV accelerator, we noticed that carbon foils did not break very quickly. Thus a single carbon foil in a $0.5 \mu \mathrm{mp}$ beam of $\mathrm{N}_{14}{ }^{+}$would last a few hours.

RESUTS

A typical spectrum below 2000° is shown in Fig. I. Identifications of spectra obtained below 2 MeV are given in Table I, and spectra at $3-5 \mathrm{MeV}$ in Table II.

A list of unidentified lines is given in Table III. Only those Iines of intensity more than 3 times the noise level have been listed. Approximately 30 other very weakly excited lines were observed. The nine lines marked with an asterisk ($*$) were strongly excited in the $N_{28}{ }^{+}$beam at energies of 0.5 and 1.5 MeV (i.e., a.t 0.25 and 0.75 MeV per $\mathrm{N}_{14}{ }^{+}$), but were absent or weakly excited in the $\mathrm{N}_{14}{ }^{+}$beam at 0.5 and 0.25 MeV . Three of these coincide with the wavelengths of N I Iines at $\lambda 1153,1229$, and $1176 \AA^{\circ}$. However, $\lambda 1229$ and 1176° were also strongly excited in a 1.85 MeV beam of $\mathrm{N}_{14}{ }^{+}$. $\lambda 1208,1392,1403$, and $1466 \AA$ could be seen weakly excited in the $0.25 \mathrm{MeV} \mathrm{N}_{14}{ }^{+}$beam. Although not understanding what mechanism produces better excitation in the molecular beam, we suggest that these Iines belong to \mathbb{N} I. Possible identifications of the other unknown lines, based on their energy dependence, are given in Table III. The line at入I335A coincides with a possible C II line which has been observed to be very strongly excited in beam-foil carbon spectra, but few of the others appear to be likely carbon lines. The beam-foil spectrum of $\mathrm{O}_{16}{ }^{+}$and $\mathrm{O}_{32}{ }^{+}$ in this region reveals only one wavelength coincidence at $\lambda I 372 \AA$ of an O V transition. Thus the origin of these lines is suspected to be nitrogen.

The scans on the higher energy accelerator were observed at a resolution of 5 - $10 \AA$ with a position accuracy of $\pm 2 \AA$. Several scans at energies of 3.5 to 5 MeV were made from $2000-5000 \AA$. One N II line was observed.

Seven \mathbb{N} III lines were observed at the Iowest energy, 3.5 MeV , while the N IV lines and $N V$ Iines observed were strongest at the higher energies. All these observed lines have been seen in previous beam-foil spectra. ${ }^{6-10}$ Below $2500{ }^{\circ}$ observations with the 2 MV accelerator were made at resolutions of $1-2 \AA$ and line positions were known to $\pm 1 \AA$. These observed spectra, and the measured decay times from both accelerators are discussed below. Spectral line identifications were made from Hallin's measurements of N IV and $\mathrm{NV},{ }^{13,14}$ and also from tables. ${ }^{15}$

N I

Fourteen N I transitions were observed in the wavelength range $\lambda 1050-2000 \AA$ from a $0.5 \mathrm{MeV} \mathrm{N}{ }_{28}{ }^{+}$beam. All but the strongest lines at $\lambda I 134 \AA$ and $\lambda 1200 \AA$ had disappeate 3 at beam energies of 0.75 MeV per $\mathrm{N}_{1}{ }^{+}{ }^{+}$ ion. The strong N I line at $\lambda 1243 \AA$ can be resolved from the $N V$ resonance lines at $\lambda 1238$, and $\lambda 1254 \AA^{\circ}$ by the energy dependence in this wavelength region. At an intermediate energy the spectral intensity decreases while at low energies (Iess than 0.5 MeV per $\mathrm{N}_{14}{ }^{+}$) it is a strong singlet and at high energies a doublet of $4 \AA$ separation can be seen. Four measured IV I mean lives have been reported in another paper. ${ }^{16}$

N II

Seventeen triplet and singlet transitions in N II were observed. The maximurn intensity of NV II lines occurred at about 0.75 MeV per $\mathrm{N}_{14}{ }^{+}$. The transition at λ I843 overlaps with a possible \mathbb{N} III transition and that at $\lambda 23166^{\circ}$ with possible N III and \mathbb{N} IV transitions. The energy dependence of the observed intensity suggests that all these transitions were present.

The decay time of a transition at $\lambda 1276 \frac{1}{9}$ was attributed to the $2 s 2 p^{3}{ }^{3} D^{0}-2 p 3 p{ }^{3} P$ transition of N II. At higher energies a $\mathbb{C l}$ IV transition at $\lambda 1272^{\circ}$ partially obscured it. There is no apparent cascading contribution to this double electron jurip, which has a mean life measured as 6.7 ± 0.2 nsec. The transition at $1345{ }^{\circ} \mathrm{A}$ is due partiy to a transition in N III and the $2 s 2^{2}{ }^{3} D^{\circ}-2 p 3 p{ }^{3} D_{D}$ transition in II II. Comparing the variations of intensity of this transition as a function of beam energy and other know \mathbb{N} II and \mathbb{N} III transitions, we can estimate the contributions of each multiplet. At low energy the \mathbb{N} II contribution is evidently much larger and we attribute the fast decay to the mean life of the $2 \mathrm{p} 3 \mathrm{p}{ }^{3} \mathrm{D}$ multiplet of N II.

The decay time of the N II resonance line at $\lambda 1085 \AA^{\circ}$ has been previously measured, once by Lawrence and Savage ${ }^{17}$ using thled electron beam for excitation, and also by Heroux ${ }^{9}$ using the beam-foil technique. Our result deduced from the straight line slope of the experimental curve of $3.15 \pm 0.2 \mathrm{nsec}$ was slightly higher but agreed within the estimated error. We have carefully examined the data for possible influence of cascades. The terms $3 p^{3} p$ and $2 p^{3}{ }^{3} D$ can populate the $2 p^{3}{ }^{3} D^{0}$ level through the transitions at λ_{1275} and $1345 \AA$ whose lifetimes are reported above. Figure 2 shows the computed corrections due to these two cascades. Just behind the foil the transitions at $\lambda 1276$ and $1345 \AA$ are about 30 and 20 times weaker than that at $\lambda 1035 \AA$. The corrections are small (about lo\%) and not apparent on the experimental decay curve because the two cascading mean lives are of the same order of magnitude as the principal decay. The corrected mean life of the $2 p^{3}{ }^{3} D^{0}$ level is 2.8 ± 0.2 nanosec.

N III

Thirty-eight transitions in N III were observed. These are shown in the Grotrian diagrams of Figs. 3a, b. Their optimum excitation was at $1.0-2.0 \mathrm{MeV}$ per $\mathrm{N}_{14}{ }^{+}$. AII 2 p 3 p and 2 p 4 p quartet levels were seen produced in the foil excitation (except $2 \mathrm{p} 3 \mathrm{~s}{ }^{4} \mathrm{P}^{\circ}$ which has no decay transition in this wavelength region). Most doublet levels of similar energy were also seen, but with somewhat lower intensities.

Of the six N III measured decay times, only one at $\lambda 2064 \AA$ had been previously reported. ${ }^{8}$ There was good agreement. The resonance line at $\lambda I 184 \AA$ agreed with theory ${ }^{18}$ to 20_{10}^{1} but the $2 p^{3} D^{\circ}$ lifetime measured at $\lambda 1749 \AA$ differs from theory by a factor of four. ${ }^{15}$ No other theoretical results have been reported for levels excited in this work. The decay time measured at $\lambda 1176 \AA$ was attributed to the $5 s^{2}$ S Ievel. However, the intensity dependence on energy of this line was unusual as noted earlier and therefore this labeling cannot be cextain. Heroux ${ }^{19}$ has observed a C III transition at $1175.7 \AA$ with the same decay time, $0.80 \pm 0.04 \mathrm{nsec}$. This was strongly excited in a carbon beam-foil experiment and is another possible origin of this line.

N IV

Seventeen N IV lines were observed at energies between 1.0 and 1.85
MeV . Two decays were measured at 11344°. One, observed at a particle energy of 0.25 MeV , was due to the strong N I line already mentioned. However, a. Iine at this wavelength remained strong even at 1 MeV , by which energy all the other N I lines had vanished. The decay curve showed long and short components. The latter, measured to be 0.30 ± 0.05 nsec, is attributed to an inner-shell electron transition in N IV: $2 s 3 s^{3} \mathrm{~S}-2 \mathrm{p} 3 \mathrm{~s}{ }^{3} \mathrm{P}^{\circ}$. The slow decay $7.0 \pm 1.0 \mathrm{nsec}$ is the same as the

N I, but this is considered to be accidental, the correct source being a. level in N IV which cascades into the $2 \mathrm{p} 3 \mathrm{~s}{ }^{3} \mathrm{P}^{\circ}$ level, such as the $2 p 3 p{ }^{3} \mathrm{P}$ or ${ }^{3} \mathrm{D}$ levels.

The N IV line at $\lambda 2318 \AA^{\circ}$ was measured in third order where it coincides with a second order N IV line at $\lambda 34800^{\circ}$. The latter has been measured by Denis et $21{ }^{5}$ and Pinnington and Lin, ${ }^{8}$ who obtained mean lives 8.2 and 7.3 nsec, respectively. These are in disagreement with our decay time of $1.30 \pm 0.1 \mathrm{nsec}$. However, the photomultiplier used in our experiment was an EMR $541-F$, the response of which is very Iow above $3000 \AA$. Also the line appeared in second order at $\lambda 2318 \AA$ with a similar intensity. Therefore we attribute our decay to the $\lambda 2318 \AA$ line originating at the $2 s 5 f^{3} P^{\circ}$ N IV state. In Refs. 6 and 8 the beam was not mass analyzed before entering the chamber which can produce some errors in identifications.

A decay time of $1.22 \pm 0.1 \mathrm{nsec}$ wes obtained for the line at $\lambda 2647 \AA^{\circ}$, in disagreement with the value of 2.3 nsec of Ref. 11. The line is strong at energies of $1.5-5.0 \mathrm{MeV}$ and is identified as due to the N IV $4 \mathrm{I}^{3}{ }^{3} \mathrm{~F}^{\circ}$ $5 \mathrm{~g}^{3} \mathrm{G}$ transition. The transition observed at $\lambda 4610 \AA$ is a superposition of the N IV transition at $\lambda 4506 \AA$, and the $N V$ transition $3 s^{2} S-3 p{ }^{2} P^{0}$ at $\lambda 4604,4620 \AA$. The long lifetime of the observed decay of 7.1 ± 1.0 nsec agrees with the N IV Iifetime measured in Ref. 6. We thus presume the fast decay of $0.51 \pm 0.05 \mathrm{nsec}$ is the mean life of the $\mathbb{N} V 3 p^{2} P^{0}$ multiplet and the longer decay is that of the N IV multiplet.

N V

Nine $N V$ lines were seen below $2000 \AA$ for particle energies between 1.0 and 1.75 MeV , their intensities increasing with increasing beam energy. The lifetimes of the $N \mathrm{~V} 2 \mathrm{p}{ }^{2} \mathrm{P}_{\frac{1}{2}, \frac{3}{2}}$ levels at $\lambda 1238,1243 \AA$ have been previously measured both unresolved ${ }^{20}$ and resolved. ${ }^{21}$ our measurement is in agreement with these two results. The N V 6fgh-7 dghi transition at $\lambda 4950 \AA$ was previously measured photographically by Fink et 3.1 ." and agrees with our result of $1.6 \pm 0.1 \mathrm{nsec}$.

None of the other $\mathbb{N} V$ Iifetimes had been previously measured. No theoretical estimates for the transition probabilities are knom to ascertain whether the long or short-lived component of some of these decays is the lifetime of the upper state.

N VI

One N VI transition was observed at $\lambda 1896$, $1907 \AA$ with a 1.55 MeV $\mathrm{N}_{14}{ }^{+}$beam. It is the triplet resonance transition $1 \mathrm{~s} 2 \mathrm{~s}^{3} \mathrm{~S}-\operatorname{ls} 2 \mathrm{p}{ }^{3} \mathrm{P}^{\circ}$ and has been observed in a theta-pinch plasma by Bockasten et aI. ${ }^{33}$ The two components were resolved, but the component at $\lambda 1907 \AA$ was blended with a IV III transition.

The decay time of a transition of unknow origin is also given. The line at $\lambda 2359 \AA^{\circ}$ appeared strongly excited in the higher energy range 3.5 to 5 MeV with energy behavior similax to that of other N IV lines, and hence is probably a N IV transition.

CONCIUSION

It has been observed that the beam-foil excitation produces a large number of nitrogen lines in the vacuum ultraviolet. More than 90% of the stronger lines have been identified. Neutral nitrogen and ions up to \mathbb{N}^{5+} were excited at beam energies up to 5 MeV . The decay times of 21 of the strongest of these transitions were measured.

ACKNOWILEDGMENTS
J. D. and R. M. S. wish to express their appreciation for having enjoyed the hospitality of the University of Arizona Van de Graaff Laboratory.

REFERENCES

* Supported in part by HASA and ONR.
$\dagger_{\text {Present address: Université de Lyon, France. }}$
$\ddagger_{\text {Present address: University of Toledo, Toledo, Ohio. }}$
$-{ }^{1}$ S. Bashkin, Ed., Beam-Foil Spectroscopy, Proceedings of the Beam-Foil Conference, University of Arizona 1967 (Gordon \& Breach, New York 1968).
${ }^{2}$ L. Kay, Physics Letters 5, 36 (1963).
${ }^{3}$ S. Bashkin and A. B. MeineI, Ap. J. 139, 413 (1964).
${ }^{4}$ P. R. Malmberg, S. Bashkin, S. G. Tilford, Phys. Rev. Letters 15, 98 (1965).
${ }^{5}$ M. R. Lewis, T. Marshall, E. H. Carnevale, F. S. Zimnock, and G. W. Whares, Phys. Rev. 164, 94 (1367).
${ }^{6}$ A. Denis, J. Desesquelles, M. Dufay, Mlle. M. C. Poulizac, Compt. Rend. 266B, 64 (1968).
${ }^{7}$ U. Fink, G. W. McIntire, and S. Bashkin, J. Opt. Soc. Am. 58, 475 (I968).
${ }^{8}$ E. H. Pinnington, and C. C. Lin, J. Opt. Soc. Am. 59, 776 (1969).
${ }^{9}$ I. Heroux, Phys. Rev. 153, 156 (1967).
${ }^{10}$ U. Fink, J. Opt. Soc. Am. 58, 937 (1968).
${ }^{11}$ S. Bashkin, H. G. Berry, W. S. Bickel, J. Desesquelles, Compt. Rend. 268B, 234 (1969).
${ }^{12}$ S. Bashkin, H. G. Berry, W. S. Bickel, J. Desesquelles, Compt. Rend. 268B, (1569).
${ }^{13}$ R. Hallin, Arkiv Fys. 32,201 (1966).
${ }^{14}$ R. Hallin, Arkiv. Fys. 31, 511 (1966).
${ }^{15}$ A. R. Striganov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms, (Plenum Press, New York 1968).
${ }^{16}$ W.S. Bickel, Jean Desesquelles, H. G. Berry and S. Bashkin, "Mean Lives of Some Excited Levels in $\mathbb{N} I^{\prime \prime}$, (also in this issue).
${ }^{17}$ G. M. Lawrence and D. B. Savage, Phys. Rev. 141, 67 (1966).
${ }^{18}$ W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities, MSRDS-NBS. 4 (Washington, D.C. I966).
${ }^{19}$ I. Heroux, Phys. Rev. 180,1 (1969).
${ }^{20}$ W. S. Bickel, H. G. Berry, J. Desesquelles, S. Bashkin, J. Quant. Sp. and Rad. Transf.
${ }^{23}$ K. H. Berkner, W. S. Cooper III, S. N. Kaplan, and R. V. Pyle, Phys. Letters 16, 35 (1965).
${ }^{22}$ K. Bockasten, R. Halliri; K. R. Johansson, and P. Tsui, Phys. Letters 8, 181 (1904).
${ }^{23}$ Charlotte Moore, Atomic Energy Levels, Vol. Is Cir. 457, NBS (1949).

Fig. 1. Beam-foil spectra of nitrogen in the wavelength region d1100-1350í, at low and high beam energies.

Fig. 2. Decay curve for the N II IO85̊ $2 p^{2}{ }^{3} P-2 p^{3} D^{0}$ transition. The line through the dots • is the fit to the original data; that through the pluses + is the fit after correction for the two cascades from the $3 p^{3} p$ and $3 p^{3} D$ levels.

Fig. 3. The energy levels of N III listed in Ref. 23. The doublet and quartet wavelengths observed in the beam foil spectrum are indicated in (a) and (b) respectively.

Table I. Observed transitions $21050-3000 \AA$ at energies $\leq 2.0 \mathrm{MeV}$.

Wavelength \AA^{2}			Transition
17 I	1068		$2 p^{3}{ }^{2}{ }^{\circ}-5 d^{2} F$
	1134		$2 p^{3} s^{0}-2 p^{4} p$
	1243		$2 p^{3}{ }^{2} P^{0}-3 s^{\prime \prime}{ }^{2}$
	1152		
	1168		$2 p^{3}{ }^{2}{ }^{\circ}-3 d^{2} F$
	1200		$2 p^{3}{ }^{4} S^{0}-3 s^{4} p$
	1226		$2 p^{3}{ }^{2} P^{0}-4 d^{2} D$
	1229	Bl.	$2 p^{3}{ }^{2} P^{0}-4 d^{2} p$
	1243		$2 p^{3}{ }^{2} D^{\circ}-3 s^{*}{ }^{2}$
	1311		$2 p^{3}{ }^{2} P^{\circ}-32^{2} D$
	1320		$2 p^{3}{ }^{2} p^{0}-3 d^{2} p$
	1330		$2 p^{3}{ }^{2} P^{0}-4 s^{2} p$
	1412	B1.	$2 p^{3}{ }^{2} P^{0}-3 s^{*}{ }^{2}$
	1744		$2 p^{3}{ }^{2} p^{0}-3 s^{2} p$
N II	1086	BI.	$2 p^{2}{ }^{3} p-2 p^{3}{ }^{3} D^{0}$
	1276		$2 p^{3}{ }^{3} D^{0}-3 p^{3} p$
	1345		$2 p^{3}{ }^{3} D^{\circ}-3 p^{3} \mathrm{D}$
	1628		$2 p^{3}{ }^{3} p^{0}-3 p^{3} p$
	1677		$2 p^{3}{ }^{3} p^{0}-3 p^{3} S$
	1762		$2 p^{3}{ }^{3} S^{0}-3 s^{3} p$
	1844	BI.	$3 s^{3} \mathrm{P}^{0}-4 \mathrm{p}^{3} \mathrm{P}$
	1860	Bl.	$3 s^{3} p^{0}-4 p^{3} \mathrm{D}$

Table I (continued)

Wavelength $\AA^{\text {a }}$			Transition
$\underset{(\text { cont })}{\text { NII }}$	2078		$2 p^{3}{ }^{3} S^{0}-4 p^{3} p$
	2093		$3 p^{3} \mathrm{D}-5 s^{3} \mathrm{P}^{0}$
	2317	B1.	$3 \mathrm{p}{ }^{3} \mathrm{D}-4 \mathrm{~d}^{3} \mathrm{~F}^{\circ}$
	2388		$3 p^{3} S-4 a^{3} P^{0}$
	2462		$3 p^{1} \mathrm{D}-5 \mathrm{~s}^{1} \mathrm{P}^{0}$
	2644		$3 \alpha^{3} P^{0}-6 f^{3} D$
	2689	BI.	$3 \mathrm{~d}^{\mathrm{I}_{\mathrm{F}} 0}-6 \mathrm{f}^{1} \mathrm{~F}$
	2823		$2 p^{3}{ }^{1} p^{0}-4 p^{1} p$
TIII	1105		$3 s^{3} S-4 p^{2} P^{0}$
	1116		$2 p^{2}{ }^{2} P^{0}-3 p^{2} D$
	1121		$3 s^{4} P^{\circ}-4 p{ }^{4} D$
	1176		$3 p^{2} p^{0}-5 s^{2} S$
	1184		$2 p^{3}{ }^{2} p-2 p^{3} P^{0}$
	1229	BI. I, IV	$3 p^{2} P^{0}-3 p^{2} S$
	1303	B1.	$4 p^{2} P^{0}-4 f^{3} D$
	1314		$3 s^{2} s-3 s^{2} P^{0}$
	1324	B1. IV	$\left\{\begin{array}{l}3 p^{4} D-4 d^{4} D^{0} \\ 3 d^{2} D-3 d^{2} P^{0}\end{array}\right.$
	1347		$3 \mathrm{p}{ }^{4} \mathrm{D}-4 \mathrm{~d}^{4} \mathrm{~F}$ 0
	1360		
	1387		$3 p^{2} p^{\circ}-42^{2} D$
	1412	BI. I	$2 p^{3}{ }^{2} P^{0}-4 s^{2} S$

Table I (continued)

Wavelength $\AA^{\text {a }}$			Transition
N III	2465		$4 f^{2} F^{\circ}-4 f^{3} D$
	1470		$3 \mathrm{p}{ }^{4} p-4 d^{4} D^{0}$
	1507	?	$4 p^{2} p^{0}-4 p^{2} D$
	1560	?	$2 p^{3} D^{0}-3 d^{2} D$
	1698	B1. V	$3 \mathrm{p}{ }^{4} \mathrm{D}-4 \mathrm{~s}{ }^{4} \mathrm{P}^{0}$
	1722		$3 d^{4} F^{0}-4 f^{4} D$
	1729		$3 \mathrm{C}^{4} \mathrm{~F}^{0}-4 \mathrm{f}^{4} \mathrm{G}$
	1750		$2 p^{3}{ }^{2} p-2 p^{3} D^{0}$
	1804		$3 p^{2} P^{0}-4 s^{2} S$
	1847		$3 \mathrm{C}^{4} \mathrm{D}^{\circ}-4 \mathrm{f}^{4} \mathrm{~F}$
	1884		$3 \alpha^{2} \mathrm{D}-4 f^{2} \mathrm{~F}^{0}$
	1908	BI. VI	$32^{2} D^{0}-4 f^{2} F$
	1920		$3 \mathrm{~S}^{4} \mathrm{P}^{\circ}-4 \mathrm{~S}^{4} \mathrm{D}$
	1948		$3 \mathrm{p}{ }^{4} \mathrm{P}-4 \mathrm{~S}^{4} \mathrm{P}^{0}$
	2060		$3 \mathrm{~d}^{2} \mathrm{~F}^{0}-4 \mathrm{f}^{2} \mathrm{D}$
	2065		$3 \mathrm{~d}^{2} \mathrm{~F}^{0}-4 \mathrm{~F}^{2} \mathrm{G}$
	2147		$3 a^{4} D^{0}{ }_{5} F^{0}-4 p^{4} P, D$
	2248		$3 d^{2} D-4 p^{3} P^{0}$
	2273		$3 \alpha^{4} D^{\circ}-4 \mathrm{p}{ }^{4} \mathrm{D}$
	2317	BI. II, IV	$3 d^{4} D^{0}-4 p{ }^{4} P$
	2369		$3 \mathrm{C}^{4} \mathrm{P}^{0}-4 \mathrm{p}{ }^{4} \mathrm{~S}$
	2454		$3 d^{4} P^{\circ}-4 p^{4} D$
	2689	B1. II	$4 d^{2} D-6 f^{2} F^{\circ}$
	2866		$4 f^{2} F^{\circ}-6 g^{2} G$

Table I (continued)

Wavelength $\AA^{\text {a }}$			Transition
N IV	1086	B1. II	$3 p^{3} P^{0}-4 s^{3} S$
	1134	B1. I	$3 s^{3} \mathrm{~S}-3 s^{3} P^{0}$
	1170		$3 d^{3} \mathrm{D}-3 \mathrm{~d}^{3} \mathrm{D}^{0}$
	1229	BI. I, III	$2 p^{3}{ }^{3} P^{0}-4 d^{3} D$
	1248	?	$3 \mathrm{~d}^{3} \mathrm{~F}^{\circ}-6 \mathrm{~g}^{3} \mathrm{G}$
	1272		$3 p^{3} p^{0}-3 p^{3} p$
	1299	B1. III	$3 d^{1} \mathrm{D}-3 \mathrm{a}^{1} \mathrm{~F}^{\circ}$
	1324	BI. III	$3 d^{3} \mathrm{D}-3 \mathrm{~d}^{3} \mathrm{~F}^{\circ}$
	1439		$3 d^{2} F^{0}-6 g^{1}{ }^{\text {a }}$
	1446		$3 d^{1} D-3 d^{1} D^{0}$
	1687		$4 f^{3} F^{\circ}-6 g^{3}{ }_{G}$
	1719		$2 p^{1} P^{0}-2 p^{2}{ }^{1} D$
	2080		$3 \mathrm{~d}^{1} \mathrm{~F}$ O $-5 \mathrm{~g}^{1} \mathrm{G}$
	2317	Bl. II, III	$4 \mathrm{~d}^{3} \mathrm{D}-5 \mathrm{f}^{3} \mathrm{~F}^{\circ}$
	2430		$4 p^{3} p^{0}-5 s{ }^{3} \mathrm{~S}$
	2476		$4 \mathrm{~d}^{1} \mathrm{D}-5 \mathrm{f}^{ \pm} \mathrm{F}^{\circ}$
	2646		$4 \mathrm{f}^{3} \mathrm{~F}{ }^{0}-5 \mathrm{E}^{3} \mathrm{G}$
NV	1238 1243	Bl. I	$\left\{2 s^{2} S_{\frac{1}{2}}-2 p^{2} P_{\frac{1}{2}, \frac{3}{2}}^{0}\right.$
	1389		$4 s^{2} S-5 p^{2} P^{0}$
	1498		5f,g - 8 fgh
	1549		$4 p^{2} p^{0}-5 d^{2} D$

Table I (continued)

Wavelength $\AA^{\text {a }}$			Transition	
IN V cont.	1617		4d, f - 5 dfg	
	1698	BI. III	$5 \mathrm{~s}, 4 \mathrm{p}-7 \mathrm{p}, 5 \mathrm{~s}$	
	1860	BI. II	$5 \mathrm{dfg}-7 \mathrm{fgh}$	
N VI	1896		$\left\{2 s^{3} S-2 p^{3} p^{0}\right.$	
	1907	B1. III		

$a_{B I}=$ Blend. Roman numeral indicates other charge states involved in blend.

Table II. Observed transitions above $\lambda 2000 \AA$ at energies $\geq 3.5 \mathrm{MeV}$.

Wavelength \AA		Transition
N II	2131	$3 p^{1} D-5{ }^{1} F^{\circ}$
N III	2064	$30^{2} F^{\circ}-4 f^{2} G$
	2188	$3 \mathrm{C}^{2} \mathrm{P}^{0}-4 \mathrm{P}^{2} \mathrm{D}$
	2315-22	3d ${ }^{4} P^{0}-4 \mathrm{p}{ }^{4} p$
	2370	$3 d^{4} P^{0}-4 p{ }^{4} \mathrm{~S}$
	2454-68	$3 d^{\wedge} P^{0}-4 p{ }^{4} \mathrm{D}$
	2688	$4 d^{2} D-6 I^{2} F^{\circ}$
	- 2862	$4 f^{2} F^{\circ}-6 g^{2} G$
N TV	2080	$3 d^{ \pm} F^{0}-5 g^{1} G$
	2318	$4 d^{3} \mathrm{D}-5 \mathrm{f}^{3} \mathrm{~F}^{\circ}$
	2431	$4 \mathrm{p}^{3} \mathrm{P}^{0}-5 \mathrm{~S}^{3} \mathrm{~S}$
	2478	$4 d^{1} D-5 f^{1} F^{\circ}$
	2594 B1. V	$3 \mathrm{p}{ }^{1} \mathrm{P}-{ }^{1} \mathrm{P}^{0}$
	2647	$4 f^{3} F^{0}-5 g^{3} G$
	2885	$5 g^{3} \mathrm{G}-7 \mathrm{~h}^{3} \mathrm{H}^{\circ}$
	3078	$4 \mathrm{I}^{1} \mathrm{~F}^{\circ}-5 \mathrm{~g}^{1} \mathrm{G}$
	$\left.\begin{array}{l} 3119 \\ 3127 \end{array}\right\}$	$3 p^{3} D-4 f^{3} F^{\circ}$
	3747	$3 s^{2} P^{0}-3 p^{2} D$
	4058	$3 p^{2} P^{0}-3 d^{1} D$
	4606 Bl. V	$5 f^{3} F^{0}-6 g^{3} G$

Wavelength \AA			Transition
$\begin{aligned} & \text { N IV } \\ & \text { cont. } \end{aligned}$	4707		$5 f^{3} F^{0}-6 g^{3} G$
	$\left.\begin{array}{l} 5814 \\ 5844 \end{array}\right\}$		$3 p^{3} p-3 d^{3} P^{0}$
IV V	2590	BI. IV	$5 s^{2} s-6 p^{2} P^{0}$
	2859		$5 p^{2} P^{0}-6 d^{2} D$
	$\left.\begin{array}{l} 2975 \\ 2981 \end{array}\right\}$		$\left[\begin{array}{l}5 d^{2} D-6 f^{2} F^{0} \\ 5 f^{2}{ }^{\circ}{ }^{\circ}-6 g^{2}{ }_{G}\end{array}\right.$
	2998		$6 \mathrm{f}, \mathrm{g}, \mathrm{h}-8 \mathrm{~g}, \mathrm{i}, \mathrm{h}$
	3161		$5 p^{2} P^{0}-6 s^{2} s$
	$\left.\begin{array}{l} 4504 \\ 4520 \end{array}\right\}$	B1. IV	$3 s^{2} s-3 p^{2} P^{0}$
	4933		$6 \alpha^{2} D-7 f^{2} F^{0}$
	$\left.\begin{array}{l} 4944 \\ 4951 \end{array}\right\}$		$\left\{\begin{array}{l}6 \mathrm{f}, \mathrm{g}, \mathrm{h}-7 \mathrm{~g}, \mathrm{~h}, \mathrm{i} \\ 6 \mathrm{f}^{2} \mathrm{~F}^{0}-7 \mathrm{~d}^{2} \mathrm{D}\end{array}\right.$

$\begin{gathered} \text { Wavelength } \\ \stackrel{1}{\AA} \\ \hline \end{gathered}$	Energy MeV	Possible Identification
1172	1.85	N III, IV
1126	1.85	IN IV, V
1130*	0.25	
1176 *	0.25	N I
1195	1.85	N IV, V
1208 *	0.25	NI
1252*	0.75	
1269*	0.75	
1290	2.0	
1334 *	0.25	C II
1372	1.5	0 V
1394*	0.25	
1403*	0.25	
1524	0.5	$\mathrm{N} \mathrm{I}, \mathrm{II}$
1535	0.5	N I, II
1591	0.5	$N \mathrm{I}, \mathrm{II}$
$\left.\begin{array}{l} 1654 \\ 1659 \end{array}\right\} \mathrm{d}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	N $\mathrm{I}_{2} \mathrm{II}$
2298	3.5	
2330	0.5	$N \mathrm{I}, \mathrm{II}$
2359	3.7	N III
$\left.\begin{array}{l} 2512 \\ 2517 \end{array}\right\} \mathrm{d}$	1.5	
2585	1.5	

Table III. (continued) Footnote
${ }^{2}$ Only those of medium to strong intensity are included. The energy is that of maximum intensity. Those marked with an asterisk (*) are explained in the text.

Ion	States	Lifetimes (nanosec)			$\begin{array}{r} \text { Cascade } \\ \text { Lifetime } \\ \text { (nsec) } \\ \hline \end{array}$	$\begin{gathered} \text { Wave- } \\ \text { length } \\ A \end{gathered}$	EnergyObserved(MeV)
	Lower Upper	Our Expt.	Other Expts.	Theory ${ }^{\text {a }}$			
N II	$2 p^{3}{ }^{2} p-2 s 2 p^{3} D^{0}$	2.8 ± 0.1	$\begin{aligned} & 2.7 \pm 0.3^{b} \\ & 2.8 \pm 0.2^{c} \end{aligned}$	$1.7{ }^{\text {c }}$	-	1085	1.0
	$2 s 2 p^{3}{ }^{3} D^{0}-2 s^{3} 2 p 3 p{ }^{3} p$	6.73 ± 0.2		-	-	1275	0.5
	$2 p^{3}{ }^{3} D^{0}-2 p 3 p{ }^{3} D$	2.12 ± 0.1		-	17.9 ± 5.0	2346	0.5
N III	$2 \mathrm{~s} 2 \mathrm{p}^{3} 2 \mathrm{p}-2 \mathrm{p}^{3} 2 p^{0}$	0.45 ± 0.1		1. $2^{\text {d }}$	1.03 ± 0.1	1184	1.0
	$3 p^{4} D-4{ }^{4} D^{0}$	1.56 ± 0.1		-	8.93 ± 2.0	1324	0.75
	$2 \mathrm{p} 3 \mathrm{~d}{ }^{4} \mathrm{~F}^{\circ}-2 \mathrm{p} 4 \mathrm{I}^{4} \mathrm{G}$	0.86 ± 0.1		∞	6.96 ± 1.0	1730	1.55
	$2 p^{2}{ }^{2} p-2 p^{3}{ }^{2} D^{0}$	0.97 ± 0.1		3.88.	-	1749	1.5
	$3 d^{8} \mathrm{~F}-4 \mathrm{f}^{2} \mathrm{G}$	2.6 ± 0.2	2.4 ± 0.1^{e}	$0.88{ }^{\text {d }}$	-	2064	3.7
	$3 \mathrm{p}{ }^{2} \mathrm{P}^{0}-5 \mathrm{~s}{ }^{2} \mathrm{~S}$	0.83 ± 0.05		-	6.79 ± 2.0	1176	1.85
N IV	$2 \mathrm{~s} 3 \mathrm{~s}{ }^{3} \mathrm{~S}-2 \mathrm{p} 3 \mathrm{~s}{ }^{3} \mathrm{P}^{0}$	0.30 ± 0.05		-	7.0 ± 1.0	1134	1.0
	$2 s^{4} d^{3} \mathrm{D}-2 s 5 f^{3} \mathrm{~F}^{0}$	1.30 ± 0.1	$7.3 \pm 0.5^{e, g}$	-	-	2318, $3480{ }^{\text {e }}$	3.7
	$2 s^{4} f^{3} F^{\circ}-2 s 5 g^{3} G$	1.22 ± 0.2	$2.3{ }^{\text {f }}$	-	-	2647	- 4.5
		2.40 ± 0.2				2359	3.7

IV (contınued)		Lifetimes (nanosec)		$\begin{array}{r} \text { Cascade } \\ \text { Lifetime } \\ \text { (nsec) } \end{array}$	$\begin{gathered} \text { Wave- } \\ \text { length } \\ \text { A } \end{gathered}$	$\begin{array}{r} \text { Energy } \\ \text { Observed } \\ \text { (MeV) } \\ \hline \end{array}$
Ion	Lower Upper	Our Expt.	Other Expts. Theory ${ }^{\text {a }}$			
N V	$2 s^{2} S-2 p^{2} p^{0}$	3.30 ± 0.2	$3.30^{\mathrm{h}} \quad 2.96$		1238,43	1.5
	$4 p^{2} p^{0}-5 a^{2} D$	0.95 ± 0.1	-	4.31 ± 1.0	1550	1.55
	$4 \mathrm{f}^{3_{F}{ }^{0}-5 \mathrm{~d}, G}$	0.76 ± 0.1	-	5.34 ± 2.0	1619	1.55
	$5 s^{3} S-6 p^{2} p^{0}$	0.51 ± 0.05	-	2.86 ± 1.0	2590	3.7
	5d, $\mathrm{f}-6 \mathrm{f}, \mathrm{g}$	0.61 ± 0.1	\cdots	1.26, 8.4^{j}	2975	3.7
	$6 \mathrm{fgh}-8 \mathrm{ghi}$	0.85 ± 0.05	-	6.4 ± 2.0	2998	3.7
	$3 s^{2} S-3 p^{2} p^{0}$	0.51 ± 0.05	-	7.1 ± 1.0	4610	4.4
	$6 \mathrm{fgh}-7$ dght	1.67 ± 0.1	$1.28^{\text {i }} \quad 6.2^{\text {d }}$	-	4950	4.4

arme theoretical lifetimes given are the inverse of the calculated transition probability for the upper state,
${ }^{b_{\text {Reference }}} 17$
${ }^{c}$ Reference 19
$d_{\text {Reference }} 18$
$\mathrm{e}_{\text {Reference }} 8$
${ }^{\text {Peference } 7}$
$\mathrm{g}_{\text {Reference }} 5$ identifies a line at $\lambda 2316 \AA$ as the $3 \mathrm{p}{ }^{3} \mathrm{D}-4 \mathrm{~d}^{3} \mathrm{~F}^{\circ}$ transition in N II with a lifetime $\mathrm{T}=0.7 \pm 0.05$ nsec. They also observe a lifetime of $9.8 \pm 0.1 \mathrm{nsec}$ for the line at $\lambda 3480 \AA$.
$h_{\text {Reference }} 22$
${ }^{\prime}$ Reference 5
$j_{\text {Reference }} 5$ identifies a line at $\lambda 2983 \AA$ as the $3 p^{2} P$. $3 d^{3} P^{\circ}$ transition in \mathbb{N} III. Their lifetime of $1.24 \pm$ 0.1 nsec agrees with our primary cascade lifetime. .

