27 research outputs found

    Seasonal predictability of the 2010 Russian heat wave

    Get PDF
    The atmospheric blocking over eastern Europe and western Russia that prevailed during July and August of 2010 led to the development of a devastating Russian heat wave. Therefore the question of whether the event was predictable or not is highly important. The principal aim of this study is to examine the predictability of this high-impact atmospheric event on a seasonal timescale. To this end, a set of dynamical seasonal simulations have been carried out using an atmospheric global circulation model (AGCM). The impact of various model initializations on the predictability of this large-scale event and its sensitivity to the initial conditions has been also investigated. The ensemble seasonal simulations are based on a modified version of the lagged-average forecast method using different lead-time initializations of the model. The results indicated that only a few individual members reproduced the main features of the blocking system 3 months ahead. Most members missed the phase space and the propagation of the system, setting limitations in the predictability of the event

    Poly(Sarcosine)-Based Nano-Objects with Multi-Protease Resistance by Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA)

    Get PDF
    Poly­(sarcosine) (PSar) is a non-ionic hydrophilic polypeptoid with numerous biologically relevant properties, making it an appealing candidate for the development of amphiphilic block copolymer nanostructures. In this work, the fabrication of poly­(sarcosine)-based diblock copolymer nano-objects with various morphologies via aqueous reversible addition–fragmentation chain-transfer (RAFT)-mediated photoinitiated polymerization-induced self-assembly (photo-PISA) is reported. Poly­(sarcosine) was first synthesized via ring-opening polymerization (ROP) of sarcosine N-carboxyanhydride, using high-vacuum techniques. A small molecule chain transfer agent (CTA) was then coupled to the active ω-amino chain end of the telechelic polymer for the synthesis of a poly­(sarcosine)-based macro-CTA. Controlled chain-extensions of a commercially available water-miscible methacrylate monomer (2-hydroxypropyl methacrylate) were achieved via photo-PISA under mild reaction conditions, using PSar macro-CTA. Upon varying the degree of polymerization and concentration of the core-forming monomer, morphologies evolving from spherical micelles to worm-like micelles and vesicles were accessed, as determined by dynamic light scattering and transmission electron microscopy, resulting in the construction of a detailed phase diagram. The resistance of both colloidally stable empty vesicles and enzyme-loaded nanoreactors against degradation by a series of proteases was finally assessed. Overall, our findings underline the potential of poly­(sarcosine) as an alternative corona-forming polymer to poly­(ethylene glycol)-based analogues of PISA assemblies for use in various pharmaceutical and biomedical applications

    Latest LAPS developments Assimilating remote sensing data and its impact on LAPS predictability

    Get PDF
    Presentación realizada en la 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    Capturing enzyme-loaded diblock copolymer vesicles using an aldehyde-functionalized hydrophilic polymer brush

    Get PDF
    Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis

    Adsorption of aldehyde-functional diblock copolymer spheres onto surface-grafted polymer brushes via dynamic covalent chemistry enables friction modification

    Get PDF
    Dynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of cis-diol-functional sterically-stabilized spheres of 30–250 nm diameter were prepared via reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization. The pendent cis-diol groups within the steric stabilizer chains of these precursor nanoparticles were then oxidized using sodium periodate to produce the corresponding aldehyde-functional spheres. Similarly, hydrophilic cis-diol-functionalized methacrylic brushes grafted from a planar silicon surface using activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) were selectively oxidized to generate the corresponding aldehyde-functional brushes. Ellipsometry and X-ray photoelectron spectroscopy were used to confirm brush oxidation, while scanning electron microscopy studies demonstrated that the nanoparticles did not adsorb onto a cis-diol-functional precursor brush. Subsequently, the aldehyde-functional brushes were treated with excess small-molecule diamine, and the resulting imine linkages were converted into secondary amine bonds via reductive amination. The resulting primary amine-functionalized brushes formed multiple dynamic imine bonds with the aldehyde-functional diblock copolymer spheres, leading to a mean surface coverage of approximately 0.33 on the upper brush layer surface, regardless of the nanoparticle size. Friction force microscopy studies of the resulting nanoparticle-decorated brushes enabled calculation of friction coefficients, which were compared to that measured for the bare aldehyde-functional brush. Friction coefficients were reasonably consistent across all surfaces except when particle size was comparable to the size of the probe tip. In this case, differences were ascribed to an increase in contact area between the tip and the brush-nanoparticle layer. This new model system enhances our understanding of nanoparticle adsorption onto hydrophilic brush layers

    Optimal inventory control policies of a two-stage push–pull production inventory system with lost sales under stochastic production, transportation, and external demand

    No full text
    An analytical model based on Markov processes is proposed for the analysis of a linear, horizontally integrated, two stages, push–pull inventory system. Uncertainty about both supply and demand is taken into consideration. Exponentially distributed lead times, compound Poisson external demand and lost sales are assumed. An algorithm that creates the infinitesimal generator matrix of the system is developed and an exact numerical solution of the system performance measures is also provided. The proposed model can be either used to evaluate what if scenarios exploring the behavior of the system or to optimize performance measures of the considered system. As an example, the model is used to analyze and get insights of the behavior of a supply–demand balanced system. © 2021, Sociedad de Estadística e Investigación Operativa

    Performance evaluation of a merge supply system with a distribution centre, two reliable suppliers, one buffer and Erlang lead times

    No full text
    In this work a two echelon merge supply chain is examined. Specifically, two non identical reliable suppliers feed a distribution centre with a shared buffer. The first echelon consists of the distribution centre and the shared buffer, the second echelon includes two non identical reliable suppliers. There is an unlimited supply of materials to suppliers and an unlimited capacity shipping area after the distribution centre. In other words, suppliers are never starved, and the distribution centre is never blocked. The materials are processed by suppliers with rates following the Erlang distribution. The distribution centre has a reliable machine that pushes material with service times following the Erlang distribution. Blocking appears when one or more suppliers finish their process and try to feed the buffer that is full. The supply network is modelled as a continuous time Markov process with discrete states. The structures of the transition matrices of those systems are explored and a computational algorithm is developed. Our aim is to generate stationary distributions for different values of system's parameters so as the various measures of the system can be estimated. Finally, for the mathematical programming model and the rest of the calculations the Matlab software is used

    Investigating the impact of atmosphere–wave–ocean interactions on a Mediterranean tropical-like cyclone

    No full text
    Understanding the governing mechanisms of atmosphere–wave–ocean​ interactions is critical for unravelling the formation and evolution mechanisms of severe weather phenomena. This study aims at investigating the effects of atmosphere–wave–ocean​ feedbacks on a Mediterranean tropical-like cyclone (medicane), occurred on 27–30 September 2018 at the central-eastern Mediterranean Sea and characterized by severe environmental and socioeconomic impact. To unveil the interactions across the air–sea interface, the medicane was simulated by an integrated modelling system consisting of the Chemical Hydrological Atmospheric Ocean wave System (CHAOS), upgraded by embedding to it the Nucleus for European Modelling of the Ocean (NEMO) as ocean circulation component. Coupled simulations revealed that air–seaheat transfer and Ekman pumping, bringing sub-surface cold waters in upper ocean layers (upwelling), caused SST cooling (∼2–3 °C). SST cooling triggered a negative feedback loop procedure tending to balance between atmospheric and ocean processes. It also attenuated the cyclone and, subsequently, reduced the atmospheric energy embedded in ocean through the upper ocean vertical stratification weakening, thus, upper ocean vertical mixing, upwelling and SST cooling. The waves adjusted this feedback loop making the system more resistant in air–sea flux variations. Waves additionally weakened the cyclone not only due to the kinetic energy loss in the lower-atmosphere but also due to the enhancement of SST cooling which is attributed to the strengthening of Ekman pumping and vertical mixing, forced by wind stress increase. Nevertheless, waves partially balanced the air–wave–sea exchanges through the slight enthalpy flux gain under high wind conditions which is explained by considering the increase of enthalpy transfer coefficient in rougher sea areas. © 2020 Elsevier Lt
    corecore