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Abstract
Accurate modelling of air–sea surface exchanges is crucial for reliable extreme surface wind-
speed forecasts. While atmosphere-only weather forecast models represent ocean and wave
effects through sea-state independent parametrizations, coupledmulti-model systems capture
sea-state dynamics by integrating feedbacks between the atmosphere, ocean and wave model
components. Here, we investigate the sensitivity of extreme surface wind speeds to air–
sea exchanges at the kilometre scale using coupled and uncoupled configurations of the Met
Office’sUKRegionalCoupledEnvironmental Prediction system.The case period includes the
passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts
of 36 ms−1 over the UK. Compared with the atmosphere-only results, coupling to the ocean
decreases the domain-average sea-surface temperature by up to 0.5 K. Inclusion of coupling
to waves reduce the 98th percentile 10-m wind speed by up to 2 ms−1 as young, growing
wind waves reduce the wind speed by increasing the sea-surface aerodynamic roughness.
Impacts on gusts are more modest, with local reductions of up to 1 ms−1, due to enhanced
boundary-layer turbulence which partially offsets air–sea momentum transfer. Using a new
drag parametrization based on the Coupled Ocean–Atmosphere Response Experiment 4.0
parametrization, with a cap on the neutral drag coefficient and reduction for wind speeds
exceeding 27 ms−1, the atmosphere-only model achieves equivalent impacts on 10-m wind
speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves
the same 20% improvement in forecast 10-m wind-speed skill as coupling to waves, with the
advantage of saving the computational cost of the ocean and wave models.
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1 Introduction

Every year several extra-tropical cyclones (ETCs) cross the British Isles, bringing extreme
surface wind speeds that cause widespread damage of varying harshness to lives and liveli-
hoods (Browning andRoberts 1994;Craig 2003;Hewston andDorling 2011; Earl et al. 2017).
The severity of the resulting damage can be estimated using the storm index first introduced
by Klawa and Ulbrich (2003), which is proportional to the cube of exceedances of the local
98th percentile of wind speeds. Evaluation of the applicability of this index demonstrates that
even relatively small forecast errors of extreme surface wind speeds can have a large impact
on the accurate prediction and assessment of the severity of ETCs (Hewston and Dorling
2011; Earl and Dorling 2013). Thus, skillful forecasts of extreme surface wind speeds asso-
ciated with ETCs are critical to providing actionable information to first-line responders as a
basis for preparedness to act (Ricchi et al. 2017; Lewis et al. 2018). The potential importance
of air–sea interaction in moderating surface wind speed has led to widespread interest in
the development of numerical-weather-prediction (NWP) systems capable of representing
air–sea surface exchanges with high fidelity (Janssen 2004; Lewis et al. 2019). Here we use
theMet Office’s UKRegional Atmosphere–Ocean–Wave Coupled Environmental Prediction
(UKC4) system to explore the sensitivity of extreme surface wind speeds and gusts to the
physical mechanisms underpinning air–sea interactions.

Although the magnitude of the near-surface wind speeds and gusts are controlled at the
synoptic scale by the baroclinicity and associated large wind shear, which favours the for-
mation of ETCs with large horizontal pressure gradients, the strengths are moderated by
local mesoscale and convective-scale processes. These processes include the convective-
scale vertical momentum exchange between the cloud layer and boundary layer, and the
turbulent vertical mixing of heat, moisture, and momentum flux that controls the effect of
the boundary-layer structure on the magnitude of near-surface wind speeds (Schultz et al.
2019). As turbulent eddies cannot be resolved by current NWPmodels, turbulent fluxes need
to be parametrized (Lock et al. 2013). The parametrized turbulent fluxes that control the
near-surface wind speed can be very sensitive to the surface-layer parametrization used due
to the steep gradients of momentum, heat, and moisture at the base of the marine atmo-
spheric boundary layer (MABL)(Janssen 2004; Ricchi et al. 2017; Lewis et al. 2019). Other
boundary-layer processes such asmoist convection and dry entrainment can dry the boundary
layer, consequently increasing the evaporation rate of the ocean. While all these processes
are important for the near-surface wind speed and gust magnitude, here we focus on air–sea
momentum exchange and the way the sea-surface temperature (SST) is communicated to the
atmosphere model; the roles of moist convection and processes at the top of the boundary
layer are not considered.

The turbulent momentum flux at the air–sea interface is the focal point of theoretical
studies that reveal the importance of dynamically evolving ocean waves in controlling the
near-surface wind speed (Charnock 1955; Smith 1988; Smith et al. 1992; Janssen 2004).
Turbulent fluctuations of atmospheric pressure induce, over the sea surface, small regular
waves (Phillips 1957), which can continue to grow in height if forced by sufficiently high
wind speeds (Miles 1957). As the young waves grow, they extract momentum and energy
from the overlying airflow, acting in the MABL as roughness elements, which reduce the
near-surface wind speed (Janssen 1989, 1991; Donelan 1982; Jenkins et al. 2012). However,
the impact of ocean waves is not exclusively confined to the near-surface wind speed. Since
ocean waves support turbulence generation, they are responsible for changing the amount
of mixing within the MABL, which in turn modifies the air–sea turbulent fluxes (Donelan
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1982; Donelan et al. 1993) and the vertical wind-speed profiles across the MABL (Sullivan
et al. 2008). At wind–wave equilibrium, when the waves are no longer growing, the MABL
profiles can be well approximated by Monin–Obukhov similarity theory (MOST) (Sullivan
et al. 2014). The theory accounts for the impact of waves and the deformation of the sea
surface through surface exchange coefficients, including the neutral drag coefficient, whose
parametrization requires no other knowledge of the sea state except that of the 10-m wind
speed (Belcher and Hunt 1993; Cook and Renfrew 2014). By employing boundary-layer
parametrizations based on MOST, atmosphere-only operational NWP models, including the
Met Office’s variable resolution model UKV (Tang et al. 2013), can be run without evolving
the ocean and wave states, reducing the complexity of the simulated physics and therefore
reducing the computational cost.

Over the past 50 years, measurements of the drag coefficient over the sea have yielded
reliable information for wind speeds less than 20 m s−1. These measurements show that
the neutral drag coefficient increases quasi-linearly with the wind speed, as predicted by
MOST. However, large-eddy simulations have shown that MABL wind-speed profiles at
extreme wind speeds deviate from those predicted by MOST theory, demonstrating that
drag cannot be assumed to always grow linearly with wind speed (Sullivan et al. 2014).
Laboratory experiments have shown that the drag coefficient saturates at 30 m s−1, while for
wind speeds higher than 30 m s−1, observations over the ocean indicate a smooth decrease
of the drag coefficient with wind speed (Powell et al. 2003). Donelan (2018) reconciled these
results distinguishing between two different turbulent ow regimes: a linear increase of drag
coefficient for wind speeds in the range of 2.5–30 m s−1 followed by a smooth decrease
in the range of 30–50 m s−1, with the latter regime explaining the explosive deepening of
Atlantic hurricanes. As near-surface wind speeds associated with the ETCs can approach
those of hurricanes, it follows that both the steepness in the linear-drag regime and the
decrease in the saturated-drag regime can affect the skill of wind speed forecasts. Over
the last decade, a number of coupled multi-model simulation systems have been developed
to directly integrate the feedbacks between the ocean and wave single-component models
and the atmosphere-only models. These systems have shown potential for more accurate
predictions of severe weather events, such as extreme surface wind speeds (Katsafados et al.
2016; Lewis et al. 2018). For example, Wahle et al. (2017) simulated a historical series
of winter storms that cross the southern North Sea, demonstrating that coupling the Wave
Model WAM (Komen et al. 1994), run at 5-km grid spacing, with the COnsortium for Small-
scale MOdelling COSMO (Rockel et al. 2008), run at 10-km grid spacing, reduced wave
heights and wind speeds by up to 8% and 3%, respectively, with associated improvements
in the forecast skill of the wind speed and wave height. Comparable reductions in wind
speeds and wave heights were documented by Varlas et al. (2017) for a cyclonic event over
the Mediterranean simulated using a two-way coupled system of the Weather Research and
Forecasting atmosphere (Skamarock and Klemp 2008) and WAM wave models, both run at
10-km grid spacing; the associated improvements in the forecast skill for wave height and
wind speed were 20% and 5%, respectively.

Ricchi et al. (2017) performed a case study of a tropical-like cyclone in the Mediterranean
sea, confirming that coupling improved the skill of extreme surface wind-speed forecasts
compared with atmosphere-only simulations, but also finding that the atmosphere-only sim-
ulations with a suitable boundary-layer parametrization achieve improvements equivalent to
those of coupling. In particular, they found that the sensitivity of the heat and momentum
fluxes to parametrizations of surface roughness is greater than the sensitivity to air–sea cou-
pling. The latter result highlights the need to consider the physical assumptions of coupling in
NWP systems as well as the parametrizations embedded within the atmosphere-only model.
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In this context, the Met Office has developed a kilometre-scale-resolution coupled-
modelling system, UKC4, (Lewis et al. 2018) for a domain focused on the UK and north-west
shelf region. The UKC4 system enables assessment of the kilometre-scale sensitivity of
rapidly varying meteorological fields, such as near-surface wind speeds, to the air–sea sur-
face exchanges represented by atmosphere–ocean–wave coupling (Lewis et al. 2018, 2019).

The aim here is to quantify, in a case study, the sensitivity of extreme surface wind speeds
to different coupled configurations and drag parametrizations using the UKC4 modelling
system as a tool. The period 17–20 September 2018 provides a paradigmatic case study
because it includes three intense ETCs that brought severe weather over the UK, with max-
imum recorded gusts of 36 m s−1. Four different configurations of the UKC4 system are
used: two atmosphere-only configurations, one provided with the operational UKV drag
parametrization and the other one with the Coupled Ocean–Atmosphere Response Exper-
iment COARE 4.0 drag parametrization with the drag coefficient capped for wind speeds
exceeding 27 ms−1 (Donelan 2018) and then decreasing for wind speeds exceeding 33 ms−1

(Hsu et al. 2017); a partially-coupled atmosphere–ocean configuration; and a fully-coupled
atmosphere–ocean–wave configuration.

Below, in Sect. 2, the UKC4 regional coupled modelling system and the coupled and
uncoupled configurations are described. In Sect. 3, the impacts of atmosphere–ocean and
atmosphere–ocean–wave coupling are compared to the two different drag parametrizations
employed by the atmosphere-only configurations and the resulting changes in the boundary-
layer profiles and vertical structure of the storms are discussed. The forecast skill of the
simulations is then evaluated by comparison to in situ observations, with conclusions given
in Sect. 4.

2 Methodology

The UKC4 system is a regional coupled multi-model NWP system (Lewis et al. 2018), which
incorporates models of the atmosphere [Met Office Unified Model MetUM (Walters et al.
2017)], land surface [the Joint UK Land Environment Simulator JULES (Best et al. 2011)],
shelf-sea ocean [the Nucleus for European Modelling of the Ocean NEMO Madec 2016]
and ocean surface waves [the WAVEWATCH I I I� (WW3DG 2016)]. A feature of the
system is the ability to set up different levels of coupling by connecting or excluding model
components. The UKC4 domain is represented in Fig. 1.

2.1 Model Components

A brief description of the UKC4 model components is now given.

• Atmosphere component: based on the UKV configuration of the MetUM (Tang et al.
2013), this employs a variable resolution with 1.5 km × 1.5 km horizontal grid cells in
the inner region increasing to 1.5 km × 4 km in the outer region and 4 km × 4 km in the
corners of the domain (950 × 1025 grid cells). The atmospheric model domain is nested
within the global model. The model uses a hybrid height vertical coordinate system with
70 vertical levels and a lid at 40 km. The SST lower boundary condition is provided by
the Operational Sea Surface Temperature and Sea Ice Analysis [OSTIA (Donlon et al.
2012)], and persisted for the entire duration of a simulation. Surface ocean currents are
initialized to zero so that the lower boundary is at rest. The effect of roughness from
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Fig. 1 TheUKC4domain (black boundary) used to define the atmosphere, ocean, andwavemodel components.
The model orography and bathymetry are also shown. The upper colourbar relates to on-shelf bathymetry
(depths < 200 m), while contour lines are plotted in the open ocean every 500 m depth. The lower colourbar
relates to the orography over land (heights < 2400 m). The orange dashed box shows the approximate extent
of the regular 1.5 km × 1.5 km inner region of the atmospheric component grid

surface waves is specified setting the Charnock parameter to the constant operational
UKV value of α = 0.011 across the whole domain.

• Land component: based on the JULES land-surface model, this component provides the
exchanges of momentum, heat, and water between the land surface and the atmospheric
boundary layer, and it shares the grid with the atmosphere component grid.

• Ocean component: based on the mesoscale eddy-resolving coastal oceanmodel [regional
version of NEMO (Tonani et al. 2019)] this employs 1.5 km × 1.5 km horizontal grid
cells throughout the domain (1458 × 1345 grid cells). The vertical domain is discretized
into 51 vertical levels. The ocean model is initialized from the operational ocean model
[the Atlantic Margin Model AMM15 (Graham et al. 2018)].

• Wave component: based on theWAVEWATCH III third-generation spectral-wavemodel,
this shares its model grid with the ocean model. The spectral boundary conditions are
provided by the archived operational global wave model output.
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2.2 Basis of the Coupling Parametrizations

A brief description of the coupling parametrizations used by the UKC4 system follows.
These are consistent with those employed in the previous model version, UKC3, and a full
discussion of those can be found in Lewis et al. (2018, 2019).

TheUKC4 system parametrizesmomentum, heat, andmoisture air–sea turbulent fluxes by
assuming thatMOSTholds in the surface layer. Therefore, in the surface layer, the dependence
of wind speed, U , on height, z, is parametrized by the log-law

U = u∗
k

[
ln

(
z

z0

)
− Ψm

]
, (1)

where u∗ is the friction velocity, z0 the aerodynamic roughness length, Ψm is the Monin–
Obukhov stability function for momentum, and k = 0.4 is the von Kármán constant. In the
UKC4 approach, Eq. 1 is used to compute the 10-m wind speed, U10, which, together with
the standard deviation of their distribution, σu , is used to parametrize the gust strengthUgust

following Panofsky et al. (1977) as

Ugust = U10 + σu
1

k
ln

(
5ekcugn + z0(eff)

5 + z0(eff)

)
, (2)

where z0(eff) is the effective roughness length, and cugn = 4 is a dimensionless number
determined from the universal turbulence spectra (Beljaars 1987). The standard deviation is
computed following

σu =
{
2.29u∗

(
1 − zblh

24L

) 1
3 L < 0

2.29u∗ L > 0,

which depends on three different boundary-layer characteristics: the friction velocity u∗, the
boundary-layer height zblh, and the Obukhov length L .

Over the sea, the roughness length, z0, depends on both the atmospheric surface-layer flow
and the underlying surface wave state, as described by the generalized Charnock formula

z0(sea) = 0.11ν

u∗
+ α

g
u2∗, (3)

where ν = 14×10−6 m2 s−1 is the kinematic viscosity of air, andα is theCharnock parameter
(Charnock 1955; Smith 1988).

In the UKC4 uncoupled atmosphere-only mode, z0 is computed using the empirical con-
stant α = 0.011 for the Charnock coefficient. When the atmosphere model is coupled to the
wave model, the latter calculates a spatially varying Charnock parameter field and exchanges
it hourly with the atmosphere component. The transfer coefficient for the momentum flux,
CD, also termed the drag coefficient, is parametrized at the ocean surface as a function of
atmospheric stability and roughness length z0 by

CD =
⎡
⎣ k

ln
(

z
z0

)
− Ψm

⎤
⎦
2

, (4)

and it is used to calculate the friction velocity, u∗, as u∗ = √
CDU10, which, together with the

value of the roughness length z0, determines the wind speed in Eq. 1. Since latent heat fluxes
are dominant over the sea, the UKC4 approach takes the roughness length for scalar fluxes
z0h(sea) as the roughness length for moisture flux, z0q , and computes it by parametrizing the
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Table 1 Summary of the four configurations of the UKC4 multi-model system

Name Components Mode Description Node hours

Adrag1 Atmosphere only Uncoupled Global OSTIA,
SST boundary
condition
persisted and
UKV regional
drag
parametrization

32

Adrag2 Atmosphere only Uncoupled Global OSTIA,
SST boundary
condition
persisted and
new drag
formulation
based on the
COARE 4.0
drag
parametrization
with the
Donelan (2018)
cap and
reduction at high
wind speeds

32

A–O Atmosphere–Ocean Partially coupled Atmosphere–
ocean coupling,
no wave
interactions

35

A–O–W Atmosphere–Ocean–Wave Fully coupled Atmosphere–
ocean–wave,
fully coupled

43

For each configuration name, the model components involved, the coupling mode, the description of some
of the key features, and the computational cost in node hours per forecast simulation day are given. All
configurations were run on the Met Office and NERC joint supercomputer system (MONSooN)

roughness length, z0, according to the surface-divergence theory from Csanady (2001), as
explained by Edwards (2007)

z0h(sea) = max

(
7 × 10−8,

2.56 × 10−9

z0

)
. (5)

To represent aerodynamically smooth conditions that occur for low wind speeds, z0h(sea) is
computed as z0h(sea) = max

(
z̃0h(sea), 2.52 × 10−10/u∗

)
where u∗ is in m s−1and z̃0h(sea)

is calculated according to Eq. 5. Then, over the ocean, the scalar transfer coefficient, Ch , can
be expressed as a function of atmospheric stability, roughness length z0, and scalar roughness
length z0h as

Ch = k2[
ln

(
z
z0

)
− Ψm

] [
ln

(
z
z0h

)
− Ψh

] . (6)

Therefore, the air–sea turbulent momentum flux, τ0, sensible heat flux, H0, and latent heat
flux, E0, are parametrized according to

τ0

ρ0
= CD|Δv|2, (7)

123



E. S. Gentile et al.

H0

cpρ0
= −ChU

(
ΔT + g

cp
(z1 + z0 − z0h)

)
, (8)

and

E0

ρ0
= −ChUΔq, (9)

where ρ0 is the air surface density, cp is the specific heat capacity at constant pressure, z1 is
the height of the bottom model layer above the surface, and Δv, ΔT , and Δq are the vertical
differences between the surface and bottom model level of the velocity vector v, temperature
T , and specific humidity q fields, respectively. In particular, the surface specific humidity is
98% of its saturation value at SST due to salinity.

2.3 Experimental Configurations

Four different configurations of theUKC4 systemwere set up (whose characteristics are sum-
marized in Table 1): two atmosphere-only configurations which use different parametriza-
tions of the neutral drag coefficient (hereafter Adrag1 and Adrag2); a partially-coupled
atmosphere–ocean configuration (hereafter A–O); and a fully-coupled atmosphere–ocean–
wave configuration (hereafter A–O–W). The JULES land-surface model is coupled to the
MetUM atmosphere model in all configurations.

The two atmosphere-only configurations (Adrag1 and Adrag2) use the MetUM only. The
Adrag1 configuration, referred to as UKA4g in Lewis et al. (2018, 2019), uses the regional
UKVdrag parametrization: z0 in Eq. 4 is computed at each grid cell using a constantCharnock
parameter α = 0.011, which is independent of the wind speed. As illustrated in Fig. 2a, the
Adrag1 parametrization uses an approximately linear growth of the neutral drag coefficient,
CD, for 10-m wind speeds greater than ≈ 5 m s−1. The Adrag2 configuration uses a new
drag parametrization which combines the COARE 4.0 parametrization at lower wind speeds
with the Donelan (2018) cap and reduction of the value of the drag coefficient at higher
wind speeds. In contrast to the UKV drag parametrization, the COARE 4.0 scheme, based
on many in situ observations, models a linear growth of the Charnock parameter α with wind
speeds, capped at 22 m s−1, which effectively models an empirical weak dependence of the
parameter α on the wave age. In particular, Fig. 2a shows that the neutral drag coefficient,
CD, modelled by the Adrag2 configuration increases steeply for wind speeds from 2.57–
27 m s−1, before plateauing at ≈ 3 × 10−3 for wind speeds from 27–33 m s−1, before
declining and flattening out at ≈ 2× 10−3 for wind speeds more than 55 m s−1. The plateau
value was tuned from the recommended Donelan (2018) value of CD ≈ 1.3 × 10−3 to
CD ≈ 2 × 10−3, consistent with findings from Hsu et al. (2017) and still within the error
bars of the Donelan (2018) drag coefficient. Note that the variation of the drag coefficient
CD with wind speeds exceeding 31 m s−1 is not relevant for this case study. For consistency,
the Adrag2 configuration uses, over the ocean, a scalar (moisture) transfer coefficient based
on the COARE4.0 parametrization and then a cap and decrease for wind speeds greater than
27 m s−1. As can be noted from Fig. 2b, the Adrag2 Ch parametrization is relatively close
to that of Adrag1 until 45 m s−1, and thus likely to lead to negligible impacts on ocean heat
and moisture fluxes for the range of wind speeds simulated in this case study.

The partially coupledA–O configuration has two-way coupling of theMetUMandNEMO
models at hourly frequency. The SST and the surface ocean currents are sent by NEMO to the
MetUM,which uses the SST and ocean currents data as boundary conditions and in turn sends
the scalar and momentum surface fluxes, pressure and velocity fields to the NEMO model.
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Fig. 2 The Adrag1 (black) and Adrag2 (green) parametrizations of the a neutral drag coefficient and b transfer
coefficient for scalar flux (moisture) in neutral conditions as a function of the 10-m wind speed, U10. a The
dashed black line represents the operational UKV drag parametrization employed in the Adrag1 configuration,
while the solid green line represents the COARE 4.0 parametrization with the Donelan (2018) cap at CD =
3.0 × 10−3 and decrease of drag values at high wind speeds to Ch = 2.0 × 10−3 employed in the Adrag2
configuration.bThedashedblack line represents the operationalUKVmoisture-fluxparametrization employed
in the Adrag1 configuration, while the solid green line represents the COARE 4.0 moisture parametrization
with a cap at Ch = 1.4 × 10−3 and then a decrease to Ch = 1.1 employed in Adrag2. The approximately
linear trend in Adrag1 drag and scalar-flux parametrization continues indefinitely above CD = 3.5 × 10−3

and Ch = 1.6 × 10−3 though not shown

TheA–O configuration uses the same regional UKVdrag parametrization used by theAdrag1
configuration. Finally, the fully coupled A–O–W configuration includes coupling to waves in
addition to coupling to the ocean by implementing two-way coupling between the MetUM,
NEMO, and WAVEWATCH III models. The MetUM sends the velocity field to both NEMO
and WAVEWATCH III, with the latter providing the MetUM a spatially and temporally
varying, wave-dependent Charnock parameter α used by the atmosphere component in Eq. 3
to update the aerodynamic surface-roughness estimate. All the simulations were initialized
at 0000 UTC 16 September 2018 and run until the 0000 UTC 21 September 2018. However,
the analysis of meteorological fields of interest started from 0000 UTC on 17 September
2018.

2.4 Evaluation of Model Forecast Skill

To assess the forecast skill of the UKC4 experiments, outputs of different model configu-
rations were compared to a variety of in situ observations sourced from the Met Office’s
meteorological database, accessed from the UK Centre for Environmental Data Analysis.
The Met Office meteorological database includes land observations, collected by automatic
weather stations managed by the national weather services operating across Europe, and
ocean observations, provided by offshore oil installations, drifting buoys, moored buoys,
and ships. Three different meteorological fields were considered: mean 10-m wind speed,
10-m gust, and SST. The mean 10-m wind speed is measured at 10-m height and obtained
by averaging the wind fluctuations (sampled every 0.25 s due to their turbulent nature) over
the 10-min period leading up to the hourly reporting time. The 10-m gust is the maximum
three-second average wind speed recorded over the 10-min period at 10-m height.
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Some issues were addressed to effectively use the large amount of data available. First,
SST data taken by ships and fed into the MetDB database were incomplete due to being
transmitted from changing locations along ship tracks. Thus, only sites that recorded the
SST data for at least 75% of the case-study duration, such as oil platforms and stationary
ships, were considered for comparison to simulated results, following Lewis et al. (2018).
Second, similarly to the SST observations, the gust observations collected over the sea were
intermittent and therefore the same rejection threshold of the SST datasets was applied.
In contrast, due to the much greater availability of temporally complete 10-m wind series
from observation sites, only those data were selected as this provided a sufficient number of
different observation locations.

The relative forecast skill between two model configurations is quantified by calculating
the relative root-mean-square error (RMSErel ) over the four-day duration of the case study,
defined as

RMSE rel = RMSEX − RMSEY

RMSEY

=
⎛
⎝

√
�(O − X)2

n
/

√
�(O − Y )2

n

⎞
⎠ − 1,

where O are the in situ observations used for comparison, n is the number of in situ obser-
vations, and X and Y are the model outputs at the observation locations from two different
configurations of the UKC4 system.

3 Results and Discussion

Below, Sect. 3.1 provides a description of the extreme weather conditions affecting the UK
from 17–20 September 2018 along with the numerical bias of the atmosphere-only Adrag1
configuration. The following subsections analyze and compare the impacts of the Adrag1,
Adrag2, and coupled configurations on the SST, 10-m wind speeds, and gusts for the surface
fields, boundary-layer structure, and forecast biases.

3.1 Synoptic Overview of Case Study and Adrag1 Atmosphere-only Simulation
Biases

The sensitivity of extreme surface wind speeds to air–sea surface exchange is investigated
in the extreme weather conditions brought by Helene, Ali, and Bronagh as they crossed
the UK from 17–20 September 2018. Helene transitioned from a hurricane to an ETC on
17 September 2018 (Fig. 3a), accompanied by increasing pressure gradients with fronts
forming, and then approached and made landfall on Ireland, and subsequently on the UK, on
18 September 2018 (Fig. 3b).

On 19 September 2018 (Fig. 3c), while Helene decayed after crossing the North Sea, the
track of Ali crossed Ireland and the UK prior to Ali’s intensification over the North Sea.
On the last day of the case study (Fig. 3d), while Ali crossed Norway, Bronagh approached
the UK. Of the three ETCs, Ali had the lowest central mean sea level pressure of 969 hPa
over the North Sea at 1800 UTC 19 September (not shown), with maximum gusts peaking
at 36 m s−1 over the North of the UK (MetOffice 2018).

As the most severe weather conditions occurred between 0000 UTC 19 September 2018
and 0000 UTC 20 September 2018, this time period was chosen to explore the bias of the
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Fig. 3 Surface mean sea level pressure 0000 UTC analysis maps (hPa) for a 17, b 18, c 19, and d 20 September
2018. The maps are derived from Met Office’s surface analyses archive, ©Crown Copyright

uncoupled atmosphere-only Adrag1 simulation under extreme wind speeds. Observed 10-m
wind speeds, 10-m gusts and SSTs are overlaid on the corresponding Adrag1 simulations
in Fig. 4a, c, e and this reveals that the Adrag1 configuration overestimates all three fields
at most of the observation sites. For example, over the North Sea, 10-m wind speeds are
overestimated by up to 5 ms−1 while SST values are overestimated by up to 1.5 K. The
biases for 10-m wind speed, gust, and SST fields depicted in Fig. 4b, d, f are consistent with
Lewis et al. (2019), who reported results over a longer time period relative to a month-long
autumn case study. The size of the bias across the domain suggests that the atmosphere-only
Adrag1 forecast may not provide a satisfactory representation of the air–sea interactions at
high wind speeds.

3.2 Impact of Coupling and Using a New Drag Parametrization on 10-mWind Speed
and Sea-Surface Temperature

For comparisons of the simulation results to be meaningful (given the limited domain and
time period), the tracks and structures of the ETCs that occurred during the case study
must not diverge strongly. The tracks and structures must also compare reasonably well with
analyses for a sensible discussion of forecast bias and skill. Comparison of all the four UKC4
simulations at 1800 UTC 19 September, when Ali crossed the North Sea and the wind speeds
were highest, revealed reassuringly small differences (not shown). The low-pressure centres
of Ali in the fully coupled atmosphere–ocean–wave A–O–W and uncoupled atmosphere-
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Fig. 4 a, bMaps of a coloured circles showing observed mean 10-m surface wind speed (581 stations) over-
laying the corresponding field from the atmosphere-only Adrag1 simulation, and b coloured circles showing
the simulated minus observed difference in mean 10-m wind speed. c, d and e, f are the same as a, b but
for gusts (255 stations) and SST (10 stations), respectively. The panels show averages of hourly data from
0000–2300 UTC 19 September 2018. The black line joining the crosses in each of the left-column panels
represents the track of Ali, diagnosed from the Adrag1 run, with the crosses indicating the position of the
mean sea-level-pressure minimum every 4 h, starting at 0000 UTC 19 September 2018. Ali is tracked until it
exits the model domain

only Adrag2 simulations were both shifted by approximately 20 km eastward compared
with the position of the low-pressure centre in the partially coupled atmosphere–ocean A–
O and uncoupled atmosphere-only Adrag1 simulation. The intensity of Ali was slightly
reduced in these simulations with an increase of the mean sea-level-pressure minimum from
≈ 966.2 hPa (Adrag1 and A–O) to ≈ 967.7 hPa (A–O–W and Adrag2). A less pronounced
pressure minimum is also systematically observed across the case study simulation days,
with the maximum difference being up to 2 hPa. This behaviour in the A–O–W and Adrag2
configurations is attributed to the enhanced momentum-transfer coefficients (as discussed in
Sect. 3.3) leading to more frictional drag at the air–sea interface and so enhanced Ekman
pumping. Lionello et al. (1998), Doyle (2002) and Varlas et al. (2017) reported similar
pressure reductions in cyclones when using wave coupling in simulations.
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Fig. 5 Time series for 17–20 September 2018 of a 98th percentile 10-m wind speeds, b 98th percentile gusts,
and c mean SST for the Adrag1 (black), Adrag2 (green), A–O (blue), and A–O–W (red) configurations and
sea-only grid points. Adrag2 and Adrag1 SST values are identical and thus overlap in c. Vertical dashed lines
at +72 h and +96 h indicate the start and end of 19 September

To focus on the low-level-jet regions in the ETCs, where air–sea interactions are strongest,
we consider the 98th percentile 10-m wind speed and gust. Figure 5 shows time series of
sea-only 98th percentile 10-m wind speeds, 98th percentile gusts, and mean SSTs for the
different simulations averaged across the UKC4 domain. The 10-m wind speeds and gusts
follow a similar pattern in all the UKC4 model configurations used here, peaking at the same
time on 19 September 2018 when storm Ali brought extreme weather conditions over the
UK (Fig. 5a, b).

As the 98th percentile 10-m wind speeds increase over time, the partially coupled A–O
simulation closely follows the atmosphere-only Adrag1 simulation, with the wind speeds
peaking at 30.3 and 30.6 m s−1, respectively, at 0600 UTC on 19 September 2018 (see
Fig. 5a). The 98th percentile of the A–O–W and Adrag2 10-m wind speeds are consistently
lower than those simulated by Adrag1 and A–O with maximum differences of up to 2 m s−1

at peak time. Prior studies of Wahle et al. (2017) and Lewis et al. (2019) documented a
similar reduction of the 10-m wind speed, attributing it to the impact of atmosphere–ocean–
wave coupling. However, the close correspondence between Adrag2 and A–O–W results
in Fig. 5a suggests that Helene, Ali, and Bronagh extreme surface wind speeds are equally
sensitive to the Adrag2 new drag parametrization and to coupling to waves. In comparison,
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Fig. 5b shows that there is much less sensitivity of simulated gust values to the change in
drag parametrization, and coupling to ocean and waves: Adrag1 and A–O peak gusts reach
47.7 m s−1 and A–O–W and Adrag2 reach 47.2 m s−1 at 0600 UTC on 19 September 2018.
Compared to the A–O results, the slight reduction of 0.5 m s−1 in 98th percentile of the
A–O–W and Adrag2 simulated gusts could be accounted for by the reduction of 10-m wind
speed upon coupling to waves and change in the drag parametrization.

The SSTs in the A–O and A–O–W simulations generally decrease with time by more than
0.5 K over the five days (Fig. 5c). This reduction contrasts with the constant SSTs in the
two atmosphere-only configurations. The near overlap of the SSTs produced by the A–O and
A–O–W simulations reveals that, in this case, SST changes are primarily a consequence of
the ocean coupling rather than the additional wave coupling, as also found by Lewis et al.
(2018). Since the ocean is slightly stably stratified after surface heating through the summer,
the oceanic mixing modelled by the ocean component implies surface cooling, consistent
with earlier remarks.

To distinguish the impacts of coupling to the ocean from that of coupling to waves, we
first compared the mean 10-m wind speed, gust, and SST differences between the A–O and
Adrag1 approaches to isolate the impact of ocean feedbacks, and then between the A–O–
W and A–O to isolate the impact of waves feedbacks. The left column in Fig. 6 shows
maps of the differences between the A–O and Adrag1 simulations, while the right column
shows differences between A–O–W and A–O simulations, all averaged over the day when
the most intense ETC, Ali, crossed the UK. The largest magnitude for the 10-m wind-speed
differences between the A–O and Adrag1 simulations are found to the north of Ali’s track,
possibly associated with slightly different positioning of the bent-back front (i.e. different
frontal structure) in the two simulations (Fig. 6a). However, the overall lack of coherency of
the wind-speed differences is consistent with the negligible impact of ocean coupling seen
in the domain-average time series (Fig. 5a). In contrast, compared with the 10-m wind speed
in the partially coupled A–O simulation, the fully coupled A–O–W 10-m wind speeds are
consistently decreased, by up to 2m s−1, in the high-wind-speed region extending south of the
track of Ali (Fig. 6b). Also, gusts are generally decreased by coupling to both the ocean and
additionally to waves south of Ali’s track (Fig. 6c, d), particularly in the North Sea, although
only by up to 1 m s−1. Figure 6e, f, consistent with the results shown in Fig. 5c, indicates that
the dominant impact of coupling on SSTs is the result of coupling to the ocean component
with reductions across most of the ocean regions peaking at≈2.2 K. The additional impact of
coupling to the wave component is smaller and localized with a 0.5-K increase in the Dogger
Bank region, characterized by shallow bathymetry, and a 0.5-K decrease near the southern
boundary of the model domain (see Fig. 6f).

3.3 Impact of Coupling and Using a New Drag Parametrization on Boundary-Layer
Characteristics

The impact of coupling and using the new drag parametrization Adrag2 on boundary-layer
characteristics is assessed by comparing simulated boundary-layer profiles at a point in the
North Sea south of the track of Ali, where the wind speed reduction in the A–O–W simulation
compared wth the Adrag1 simulation (Fig. 6b) is largest at 1800 UTC on 19 September 2018.
Figure 7a shows that the selected point (cyan star) lies within Ali’s cold sector, behind the
cold front that stretches from Norway to southern England and characterized by a MABL
height of ≈1.2 km, in contrast to a depth of ≈0.4 km in the warm sector. This marked
change in boundary-layer height, and associated stability characteristics, on crossing the
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Fig. 6 Maps of differences between A–O and Adrag1 simulated a 10-m wind speeds, c gusts, and e SSTs, and
differences between A–O–W and A–O simulated b 10-m wind speeds, d gusts, and f SSTs over the whole
model domain (masking land) averaged over 19 September 2018. The track of Ali is marked in each panel as
in Fig. 3

cold front is characteristic of ETCs (Sinclair et al. 2010). The model-output MABL height is
diagnosed using a “dynamic criterion” (Lock et al. 2013), according to which the boundary
layer corresponds to the model-level height where the Richardson number Ri exceeds the
critical threshold of 0.25. The boundary-layer profiles (Fig. 7b, c) reveal that the MABL
simulated by Adrag1 is unstable at this point and time, being characterized by a negative
near-surface gradient of potential temperature and a strong wind shear.

TheA–Oconfiguration yields aweaker near-surface gradient of potential temperature than
that simulated by the Adrag1 configuration. This is associated with reduced wind speeds at
200 m but approximately the same surface wind speeds, and therefore a reduced wind-speed
gradient (Fig. 7b, c), and leads to a MABL height of 780 m, reduced from the 1100 m
diagnosed in the Adrag1 simulation. The resulting decreased MABL instability simulated
by the A–O configuration is most likely caused by the reduction of SST in the region of the
North Sea located underneath the cold sector. Coupling to the wave model and changing the
atmospheric drag parametrization both reduce the potential temperature gradients near the
surface, leading to a small reduction in instability (comparing A–O to A–O–W) and a larger
change from an unstable (Adrag1) to a neutral (Adrag2) surface layer, as inferred from the
vertical potential temperature gradients (Fig. 7b). These changes are associated with similar
magnitude increases in the wind-shear turbulence and hence with diagnosed MABL height
(compare theA–O–W to theA–O results and theAdrag1 to theAdrag2 results). The increased
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Fig. 7 a Selected 850-hPa equivalent potential temperature contours (307, 310, and 313 K) at 1800 UTC 19
September 2018 overlaying the boundary-layer depth obtained from the Adrag1 simulation. The cold front
lies along the strong thermal gradient between Norway and southern England with the short occluded front
extending northwards, wrapping round the cyclone centre beyond the domain shown. The mean sea-level-
pressure minimum of Ali is denoted by a cyan cross. The cyan star corresponds to the site of the profiles of b
potential temperature and cwind speed (all profiles averaged over 5×5 grid cells). The lowest height value of
each of the profiles correspond to the bottom UKC4 model- level height. Horizontal lines in b, c represent the
boundary-layer height diagnosed as the model-level height where the Richardson number exceeds the critical
Richardson number Ricri t = 0.25. Horizontal grey, green, blue, and red filled strips represent the standard
error associated with the boundary-layer height diagnosed by each UKC4 configuration

turbulent eddies likely enhance momentum transfer from the air to the sea, leading to the
reduction in near-surface wind speeds already noted in Fig. 6b.

To better understand how the momentum-flux enhancements depend on the numerical
modelling of air–sea surface exchange, the maps of the surface MABL characteristics of the
A–O–W and the Adrag2 simulations are compared to those of the A–O simulation. Coupling
to waves enhances momentum fluxes in the whole region extending south of the track of Ali
(Fig. 8b), where reductions in the range of moderate to extreme 10-m wind speeds occur (see
Fig. 6b). The youngwave ages, corresponding in Fig. 8a to cp/u∗ values less than 20, indicate
that the sea is covered by young growing waves that enhance the Charnock coefficients by up
to 0.02 (see Fig. 8c), which means that the Charnock coefficients increase nearly three times
from the constant value α = 0.011 used by the Adrag1 and A–O simulations to α = 0.031,
with corresponding enhancements in the roughness length z0 by up to 1.5 × 10−3 m (see
Fig. 8d). The increase in the z0 is associated with a larger momentum loss at the air–sea
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Fig. 8 aMap of wave age in the A–O–W simulation, and maps of differences between the A–O–W and A–O
simulations of b momentum flux, c Charnock parameter, and d surface roughness, z0, all averaged over 19
September 2018. The non-dimensional wave age is computed as cp/u∗ where cp is the phase speed of the peak
of wave spectrum as defined by Cohen and Belcher (1999) and Sullivan et al. (2008). Ali’s track is marked in
each panel as in Fig. 3

interface compared with the A–O simulation, resulting in lower wind speeds. This suggests
that the waves give rise to a force proportional to the wave-induced stress, which effectively
acts as frictional drag at the air–sea interface. Similar results were documented by Janssen
(1989), Doyle (1995, 2002), Wahle et al. (2017) and Varlas et al. (2017).

The new drag parametrization used in the Adrag2 simulation enhances the momentum
fluxes in thewhole region south of the track ofAli comparedwith those in theA–O simulation
(Fig. 9b), leading to a reduction in the moderate to extreme surface wind speeds, which is
similar to that found by comparing the A–O–W and the A–O simulations (compare Fig. 9a
and 6b). Hence, the new drag parametrization must produce a frictional surface stress at the
air–sea interface, which is comparable in size to that induced by the growing young waves in
the A–O–W simulation. To verify this, the dependence of the drag coefficientCD on the 10-m
wind speed is presented for the four different UKC4 configurations in the two different sea
regions, both south of the track of Ali, marked by the two black dots in Fig. 9a: one located
in the Atlantic Ocean, off the west coast of Ireland, and the other one located in the northern
North Sea. A close inspection of Fig. 10a, b shows that in the range 5–27 m s−1 the drag
coefficients CD of the A–O–W and Adrag2 parametrizations increase with the 10-m wind
speed more steeply than those produced by the Adrag1 and A–O parametrizations, therefore
leading to a larger surface stress at the air–sea interface. The fact that the gradient of CD for
Adrag2 is even a little steeper than for A–O–W explains the corresponding slightly larger
reductions in surface wind speed observed for the Adrag2 parametrization. In the Atlantic
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Fig. 9 Maps of differences between Adrag2 and A–O simulations of a 10-m wind speed, b momentum flux,
c gusts, d surface roughness, z0, and averaged over 19 September 2018. The track of Ali is marked in each
panel as in Fig. 3

Ocean region considered in Fig. 10b,modelled 10-mwind speeds reach values above 27ms−1

where the implementation of the Adrag2 cap on the magnitude of CD is relevant. Here, there
is a suggestion that the A–O–W CD also seems to flatten above 27 m s−1, although at a
slightly lower value (CD = 2.8 × 10−3) indicating that the atmosphere-only Adrag2 is
likely capable of mimicking the physics of the air–sea surface exchange incorporated in the
atmosphere–ocean–wave configuration for the whole range of the simulated wind speeds.

The comparison, in the region of greatest surface roughness, of vertical cross-sections of
the differences in wind speed and turbulence kinetic energy between A–O–W and A–O, and
between Adrag2 and A–O (not shown), revealed that the wind-speed differences spread up to
8 km (near the tropopause), but are contained within the cyclone extent. Part of the cyclone’s
energy is dissipated through enhanced momentum loss at the air–sea interface, offering an
explanation for the reduction of the pressure minimum of Ali (see Sect. 3.2) as well as likely
leading to its quicker decay, in line with Katsafados et al. (2016).

Compared with the impacts on the 10-mwind speed, both coupling to waves and using the
Adrag2 new drag parametrization reduces the gusts less in the regions contiguous with the
track of Ali (compare Figs. 6d and 9c). In these regions, the comparatively weak reduction
in gusts arises from the formulation of the MetUM gust parametrization (Eq. 2), which is a
sum of two terms, one representing the 10-m wind speeds and the other taking into account
the friction velocity and surface roughness. Thus, a reduction of 2 ms−1 in 10-m wind speed
due to coupling to waves or the new drag parametrization is balanced by the increase in
friction velocity and aerodynamic roughness in regions contiguous to the track of Ali (see
Figs. 8d and 9d), leading to weaker simulated gusts. However, in the north-west quadrant
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Fig. 10 Drag coefficient dependence on 10-m wind speeds computed as the value of CD = τ/ρU2
10 over a

15 × 15 grid-cell area centred on points in the a North Sea (58.2◦ N, 0.9◦ E) for the Adrag1 (black), A–O
(blue), A–O–W (red), and Adrag2 (green) parametrizations, and bNorth Atlantic Ocean (52.98◦ N, 12.46◦ W)
configurations. Scatter points at hourly intervals from 0000 UTC 17 September to 0000 UTC 20 September
2018

of the model domain, far from the track of Ali, the Adrag2 and A–O–W simulations yield
localized increases and decreases in gusts of comparable magnitude to the corresponding
changes in 10-m wind speeds. Again, this can be explained as arising from the MetUM gust
parametrization, according to which the negligible change in aerodynamic roughness implies
gusts only depend on changes in 10-m wind speeds.

3.4 Impact of Coupling and Using a New Drag Scheme on Forecast Bias

The biases in the SST and 10-mwind speeds are (1) assessed for the fourUKC4configurations
over the case-study period as time series of a domain-averaged bias (Fig. 11) and (2) compared
using spatial distributions of time-averaged root-mean-square error for one simulation relative
to another simulation as illustrated in Fig. 12. Only five stations from the analyzed database
reported gust values over the UK consistently enough in time to be statistically significant
across the case-study period. Thus a bias plot for gusts is not included here.

Figure 11a shows that the magnitude of the spatially averaged 10-m wind-speed bias is
larger over sea-observation sites than over land observation sites with values up to 3 m s−1.
Over land-observation sites the biases for the four UKC4 simulations are indistinguishable
and generally positive with values up to ≈ 1 m s−1; over sea-observation sites, the biases
in the A–O–W and Adrag2 simulations are typically less than those in the Adrag1 and A–O
simulations where the biases are positive and vice versa, consistent with the reduced wind
speeds found in these simulations.

The spatially averaged SST biases (Fig. 11b) vary with time between about−0.5 K to 1 K.
As shown in Fig. 5c, the SSTs for the A–O and A–O–W simulations are similar and generally
cool with time, diverging from the fixed SSTs in the atmosphere-only simulations. As the
SSTs in the A–O and A–O–W simulations cool, the associated biases improve, changing
from generally positive to varying about zero (Fig. 11b). This contrasts with the biases for
the atmosphere-only simulations which, despite the variability with time, stay generally
positive. These results corroborate the findings of Lewis et al. (2018) in which coupling to
the ocean reduced the SST bias by up to 1 K.
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Fig. 11 Time series of spatially averaged biases for the different model simulations of a 10-m wind speed
across land-only (solid lines) and sea-only (dashed lines) observation sites (600 and 60 respectively) and b
SST (10 observation sites) for 17–20 September 2018. The lines correspond to the Adrag1 (black), Adrag2
(green), A–O (blue), and A–O–W (red) simulations. The Adrag1 and Adrag2 lines are identical in panel b

The impact of coupling to ocean, of coupling towaves, and of the newAdrag2 parametriza-
tion on 10-m wind-speed RMSErel forecast skill is quantified by computing the value of
the RMSErel of A–O relative to Adrag1, A–O–W relative to A–O, and A–O–W relative to
Adrag2. As can be seen from the prevalence of light over dark coloured dots in Fig. 12a,
partially coupling to ocean neither appreciably improves nor degrades the 10-m wind-speed
forecast compared with the atmosphere-only Adrag1 configuration. In contrast, the preva-
lence of dark green dots over the North Sea in Fig. 12b highlights that coupling to waves
improves the 10-m wind-speed-forecast skill by up to 20% over the ocean-grid cells (com-
paring the A–O–W and A–O simulations). However, changes over land are much smaller and
show, at most, a small reduction in skill in the few areas of the UK indicated by the pink dots.
Compared with the atmosphere-only Adrag2 simulation, the fully coupled A–O–W config-
uration slightly improves the 10-m wind-speed forecast in the northern part of the North
Sea, but degrades it in the central part of the North Sea (Fig. 12c). Hence, for most of the
observation sites, the atmosphere-only Adrag2 simulation with the new drag parametrization
is able to achieve the same improvement in 10-m wind-speed-forecast skill as that obtained
from fully coupling the atmosphere to ocean and waves (A–O–W) with the benefit of saving
25% of the computational cost (estimated in node hours per simulation day, see Table 1).
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Fig. 12 Percentage difference in wind speed RMSErel for a A–O relative to Adrag1, b A–O–W relative to
Adrag1, and c A–O–W relative to Adrag2 averaged over 17–20 September 2018

4 Conclusions

Prior work has documented the importance of a high-fidelity representation of air–sea surface
exchanges in NWP models to obtain an accurate forecast of extreme surface wind speeds
(Janssen 2004). Usually, this has been achieved either by providing uncoupled atmosphere-
only NWP models with a suitable boundary-layer parametrization [e.g., the UKV system
(Tang et al. 2013)] or by setting up a coupled multi-model NWP system which integrates
the feedbacks of ocean and wave models with an atmosphere-only model [e.g., CHAOS-
2-way system developed by Katsafados et al. (2016)]. In this context, the UK Met Office
developed the UKC4 multi-model system, which couples the atmospheric (MetUM) model
(and JULES land-surface model), with the ocean (NEMO), and wave (WAVEWATCH III)
models. The UKC4 system is a robust and flexible research tool characterized by different
coupling options at kilometre-scale resolution (Lewis et al. 2018, 2019).

The purpose of the current study was to quantify the sensitivity of extreme surface wind
speeds to air–sea surface exchange by using the UKC4 multi-model system in coupled and
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uncoupled modes. The extreme weather period of 17–20 September 2018 (which included
ETCsHelene, Ali, and Bronagh), was used as the case study. Four UKC4 configurations were
used: the uncoupled atmosphere-only configuration Adrag1, provided with the operational
UKV drag parametrization; the uncoupled atmosphere-only configuration Adrag2, provided
with a newdrag parametrization based on theCOARE4.0 drag parametrization correctedwith
the Donelan (2018) cap and decrease the drag coefficient at high wind speeds; the partially
coupled A–O atmosphere–ocean configuration; and the fully coupled A–O–W atmosphere–
ocean–wave configuration.

For this case study, coupling to the ocean (A–O configuration) does not strongly affect the
10-mwind speeds, but it does have an important impact on SSTs, reducing themby up to 0.5K
compared with the persisted SST field used in the two atmosphere-only Adrag1 and Adrag2
configurations. Unlike coupling to ocean, coupling to waves reduces the 10-m wind speeds
by up to 2 m s−1 compared with the atmosphere-only Adrag1 and partially coupled A–O
configurations. The atmosphere-only Adrag2 configuration provides equivalent reductions
in wind speeds. Comparison of the boundary-layer profiles at a point in the North Sea,
where the impacts of wave coupling andAdrag2 parametrization scheme aremost prominent,
demonstrate that the Adrag2 configuration is capable of simulating the same enhancement
of the air–sea turbulent momentum flux as the fully coupled A–O–W configuration.

The investigation of A–O–W air–sea momentum-flux enhancements revealed that young
growing waves extract momentum and energy from the overlying atmospheric flow, increas-
ing the frictional drag at the sea surface and thus reducing near-surface wind speeds. As
an effect of the increase in the aerodynamic roughness of this evolving sea state, Charnock
parameter values simulated by theWAVEWATCH III model, and then passed to the MetUM,
exceed the semi-empirical constant value of α = 0.011 set in the uncoupled and partially
coupled configurations. Although an increase of comparable size in aerodynamic roughness
and frictional drag over the sea due to young growing waves simulated by coupling a NWP
model to a wave component has already been documented by Varlas et al. (2017),Wahle et al.
(2017), and Lewis et al. (2018, 2019), here an equivalent increase in aerodynamic roughness
and frictional drag has also been achieved by the atmosphere-only Adrag2 simulation. It was
verified that the Adrag2 drag coefficient linear growth with 10-mwind speeds is significantly
steeper than that of the UKV drag coefficient in the range 5–27 m s−1 and above 27 m s−1 it
limits the value ofCD atCD = 3×10−3, effectivelymimicking the physics of themomentum
air–surface exchange incorporated in the fully coupled A–O–W configuration.

The increase in surface roughness and surface friction exhibited by the A–O–W and
Adrag2 simulations generates a more turbulent and thus deeper MABL resulting, in both
configurations, in areas of enhanced gustiness across the boundary layer. However, this effect
is balanced by an increase in friction velocity resulting in a modest impact on gust values
at the surface, regardless of the changes in the simulated physics across the configurations.
Moreover, the increased aerodynamic roughness in the A–O–W and Adrag2 configurations
affects the cyclone’s vertical structure and increases the mean sea level pressure by up to
2 hPa through dissipation of its energy at the air–sea interface.

Coupling to the ocean (in both the A–O and A–O–W simulations) improves the SST
bias compared with the atmosphere-only Adrag1 and Adrag2 simulations, in agreement with
results from Lewis et al. (2018), but has a negligible impact on the 10-m wind-speed bias.
However, coupling to waves (A–O–W) and using the new drag parametrization (Adrag2)
improves the wind-speed bias over sea-observation sites. Fully coupling (the A–O–W simu-
lation) improved the RMSErel forecast skill of 10-m wind speeds (over open waters) by up to
20% compared with the atmosphere-only Adrag1 and partially coupled A–O simulations, in
agreement with the literature (Wahle et al. 2017; Varlas et al. 2017). The same forecast-skill
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improvements relative to the A–O and Adrag1 simulations are achieved by the uncoupled
Adrag2 configuration, with the advantage of saving 25% of the computational cost, estimated
in node hours per simulation day, of running a fully coupled A–O–W configuration.

A limitation of this research is the short length of the time period investigated. It would
be useful to repeat the study over longer time periods to determine the statistical significance
of the results. Moreover, although coupling or changing the drag parametrization reduces
the model error in 10-m wind speeds, the relatively small improvements (respect to the
biases) imply that errors in initial and/or lateral boundary conditions, or model physics
parametrizations, dominate over errors in air–sea coupling. However, taken together, our
results demonstrate that, for this case study, an atmosphere-only model provided with the
new drag parametrization based on the COARE 4.0 parametrization with the Donelan (2018)
cap and drag reduction (as that used in Adrag2) has the same physical and numerical impacts
on the wind speeds in ETCs as a fully coupled model system, with the notable advantage of
reducing the computational cost associated with the ocean and wave model components.
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