135 research outputs found

    Hydrogen peroxide is a neuronal alarmin that triggers specific RNAs, local translation of Annexin A2, and cytoskeletal remodeling in Schwann cells

    Get PDF
    Schwann cells are key players in neuro-regeneration: They sense "alarm" signals released by degenerating nerve terminals and differentiate toward a proregenerative phenotype, with phagocytosis of nerve debris and nerve guidance. At the murine neuromuscular junction, hydrogen peroxide (H2O2) is a key signal of Schwann cells' activation in response to a variety of nerve injuries. Here we report that Schwann cells exposed to low doses of H2O2 rewire the expression of several RNAs at both transcriptional and translational levels. Among the genes positively regulated at both levels, we identified an enriched cluster involved in cytoskeleton remodeling and cell migration, with the Annexin (Anxa) proteins being the most represented family. We show that both Annexin A2 (Anxa2) transcript and protein accumulate at the tips of long pseudopods that Schwann cells extend upon H2O2 exposure. Interestingly, Schwann cells reply to this signal and to nerve injury by locally translating Anxa2 in pseudopods, and undergo an extensive cytoskeleton remodeling. Our results show that, similarly to neurons, Schwann cells take advantage of local protein synthesis to change shape and move toward damaged axonal terminals to facilitate axonal regeneration

    The Italian National Register of infants with congenital hypothyroidism: twenty years of surveillance and study of congenital hypothyroidism

    Get PDF
    All the Italian Centres in charge of screening, diagnosis, and follow-up of infants with congenital hypothyroidism participate in the Italian National Registry of affected infants, which performs the nationwide surveillance of the disease. It was established in 1987 as a program of the Health Ministry and is coordinated by the Istituto Superiore di Sanità. The early diagnosis performed by the nationwide newborn screening programme, the prompt treatment and the appropriate clinical management of the patients carried out by the Follow-up Centres, and the surveillance of the disease performed by the National Register of infants with congenital hypothyroidism are the components of an integrated approach to the disease which has been successfully established in our country

    Birth size and gestational age in opposite-sex twins as compared to same-sex twins: An individual-based pooled analysis of 21 cohorts

    Get PDF
    It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins), including 67,850 dizygotic twin individuals. Linear regression analyses showed that boys having a co-twin sister were, on average, 31 g (95% CI 18 to 45) heavier and 0.16 cm (95% CI 0.045 to 0.274) longer than those with a co-twin brother. In girls, birth size was not associated (5 g birth weight; 95% CI -8 to -18 and -0.089 cm birth length; 95% CI -0.202 to 0.025) with the sex of the co-twin. Gestational age was slightly shorter in boy-boy pairs than in boy-girl and girl-girl pairs. When birth size was standardized by gestational age, the magnitude of the associations was attenuated in boys, particularly for birth weight. In conclusion, boys with a co-twin sister are heavier and longer at birth than those with a co-twin brother. However, these differences are modest and partly explained by a longer gestation in the presence of a co-twin sister

    Associations between birth size and later height from infancy through adulthood: An individual based pooled analysis of 28 twin cohorts participating in the CODATwins project.

    Get PDF
    BACKGROUND: There is evidence that birth size is positively associated with height in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. AIM: To analyze the associations of birth weight, length and ponderal index with height from infancy through adulthood within mono- and dizygotic twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. METHODS: This study is based on the data from 28 twin cohorts in 17 countries. The pooled data included 41,852 complete twin pairs (55% monozygotic and 45% same-sex dizygotic) with information on birth weight and a total of 112,409 paired height measurements at ages ranging from 1 to 69 years. Birth length was available for 19,881 complete twin pairs, with a total of 72,692 paired height measurements. The association between birth size and later height was analyzed at both the individual and within-pair level by linear regression analyses. RESULTS: Within twin pairs, regression coefficients showed that a 1-kg increase in birth weight and a 1-cm increase in birth length were associated with 1.14-4.25 cm and 0.18-0.90 cm taller height, respectively. The magnitude of the associations was generally greater within dizygotic than within monozygotic twin pairs, and this difference between zygosities was more pronounced for birth length. CONCLUSION: Both genetic and individual-specific environmental factors play a role in the association between birth size and later height from infancy to adulthood, with a larger role for genetics in the association with birth length than with birth weight

    Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    Get PDF
    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve.Peer reviewe

    Education in Twins and Their Parents Across Birth Cohorts Over 100 years: An Individual-Level Pooled Analysis of 42-Twin Cohorts.

    Get PDF
    Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990-1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected

    Glutathione redox cycle in small intestinal mucosa and peripheral blood of pediatric celiac disease patients

    Get PDF
    The celiac disease is an autoimmune gastrointestinal disorder caused by gluten from wheat, rye or barley. In genetically predisposed persons, gluten induces the immune-mediated inflammation of small intestinal mucosa. Histological lesions include intraepithelial lymphocytosis, crypt hypertrophy and villous atrophy, resulting in malabsorption of micro- and macronutrients. The only treatment for celiac patients is a permanent gluten-free diet (GFD). Reactive oxygen species (ROS) and oxidative stress are strongly associated with the celiac disease. Glutathione (GSH) is a main detoxifier of endogenous and exogenous ROS in the intestine. In order to explain the role of glutathione redox cycle in celiac patients, we examined the activities of GSH-related antioxidant (AO) enzymes glutathione peroxidase (GPx) and glutathione reductase (GR), as well as the concentration of GSH in small intestinal biopsies and peripheral blood of children affected by the celiac disease. The concentration of lipid hydroperoxides (LOOH) as markers of oxidative damage was measured in the same samples. The results clearly demonstrate a significant malfunction of GSH redox cycle with a concomitant decrease in the capacity to regenerate GSH and detoxify LOOH in celiac patients, even after several years of GFD. The oral administration of GSH and a diet rich in natural antioxidants, as well as appropriate dietary supplements, could be of great benefit to the patients.A doença celíaca é uma desordem gastrointestinal causada pelo glúten proveniente do trigo, centeio ou cevada. Em pessoas geneticamente predispostas, o glúten induz uma inflamação imune da mucosa do intestino delgado. As lesões histológicas incluem linfocitose intraepitelial, hipertrofia de criptas e atrofia vilosa, resultando em malabsorção de micro- e macronutrientes. O único tratamento para os pacientes celíacos é a restrição permanente de glúten na dieta (GFD).Espécies reativas de oxigênio (ROS) e o estresse oxidativo estão fortemente associados à doença celíaca. O glutatião (GSH) é o principal detoxificante de ROS endógeno ou exógeno no intestino. Para explicar o papel do ciclo redox do glutatião nos pacientes celíacos, nós examinamos as atividades das enzimas GSH-relacionadas e anti-oxidantes (AO) glutatião peroxidase (GPx) e glutatião redutase (GR), assim como a concentração de GHS em biópsias do intestino delgado e sangue periférico de crianças afetadas pela doença celíaca. A concentração dos hidroperóxidos lipídicos (LOOH) como marcadores do dano oxidativo foi medida em várias amostras. Os resultados mostram claramente a mal função significante do ciclo redox do GSH com uma diminuição concomitante da capacidade de regenerar GSH e detoxificar LOOH nos pacientes celíacos, mesmo após vários anos de GFD. A administração oral de GSH e uma dieta rica em anti-oxidantes naturais, assim como de suplementos apropriados na dieta, poderiam ser de grande benefício aos pacientes

    KDM1A microenvironment, its oncogenic potential, and therapeutic significance

    Get PDF
    The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs
    corecore