91 research outputs found

    The hard X-ray Photon Single-Shot Spectrometer of SwissFEL - Initial characterization

    Full text link
    SwissFEL requires the monitoring of the photon spectral distribution at a repetition rate of 100 Hz for machine optimization and experiment online diagnostics. The Photon Single Shot Spectrometer has been designed for the photon energy range of 4 keV to 12 keV provided by the Aramis beamline. It is capable of measuring the spectrum in a non-destructive manner, with an energy resolution of Δ E/E = (2-5) × 10-5 over a bandwidth of 0.5% on a shot-to-shot basis. This article gives a detailed description about the technical challenges, structures, and considerations when building such a device, and to further enhance the performance of the spectrometer

    Numerical optimization of spherical variable-line-spacing grating X-ray spectrometers

    Get PDF
    Operation of an X-ray spectrometer based on a spherical variable-line-spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry

    On the Quasiparticle Description of Lattice QCD Thermodynamics

    Get PDF
    We propose a novel quasiparticle interpretation of the equation of state of deconfined QCD at finite temperature. Using appropriate thermal masses, we introduce a phenomenological parametrization of the onset of confinement in the vicinity of the predicted phase transition. Lattice results of the energy density, the pressure and the interaction measure of pure SU(3) gauge theory are excellently reproduced. We find a relationship between the thermal energy density of the Yang-Mills vacuum and the chromomagnetic condensate _T. Finally, an extension to QCD with dynamical quarks is discussed. Good agreement with lattice data for 2, 2+1 and 3 flavour QCD is obtained. We also present the QCD equation of state for realistic quark masses.Comment: 20 pages, 10 eps figure

    Damping Rates and Mean Free Paths of Soft Fermion Collective Excitations in a Hot Fermion-Gauge-Scalar Theory

    Get PDF
    We study the transport coefficients, damping rates and mean free paths of soft fermion collective excitations in a hot fermion-gauge-scalar plasma with the goal of understanding the main physical mechanisms that determine transport of chirality in scenarios of non-local electroweak baryogenesis. The focus is on identifying the different transport coefficients for the different branches of soft collective excitations of the fermion spectrum. These branches correspond to collective excitations with opposite ratios of chirality to helicity and different dispersion relations. By combining results from the hard thermal loop (HTL) resummation program with a novel mechanism of fermion damping through heavy scalar decay, we obtain a robust description of the different damping rates and mean free paths for the soft collective excitations to leading order in HTL and lowest order in the Yukawa coupling. The space-time evolution of wave packets of collective excitations unambiguously reveals the respective mean free paths. We find that whereas both the gauge and scalar contribution to the damping rates are different for the different branches, the difference of mean free paths for both branches is mainly determined by the decay of the heavy scalar into a hard fermion and a soft collective excitation. We argue that these mechanisms are robust and are therefore relevant for non-local scenarios of baryogenesis either in the Standard Model or extensions thereof.Comment: REVTeX, 19 pages, 4 eps figures, published versio

    The Thermal Renormalization Group for Fermions, Universality, and the Chiral Phase-Transition

    Get PDF
    We formulate the thermal renormalization group, an implementation of the Wilsonian RG in the real-time (CTP) formulation of finite temperature field theory, for fermionic fields. Using a model with scalar and fermionic degrees of freedom which should describe the two-flavor chiral phase-transition, we discuss the mechanism behind fermion decoupling and universality at second order transitions. It turns out that an effective mass-like term in the fermion propagator which is due to thermal fluctuations and does not break chiral symmetry is necessary for fermion decoupling to work. This situation is in contrast to the high-temperature limit, where the dominance of scalar over fermionic degrees of freedom is due to the different behavior of the distribution functions. The mass-like contribution is the leading thermal effect in the fermionic sector and is missed if a derivative expansion of the fermionic propagator is performed. We also discuss results on the phase-transition of the model considered where we find good agreement with results from other methods.Comment: References added, minor typos correcte

    Approximately self-consistent resummations for the thermodynamics of the quark-gluon plasma. I. Entropy and density

    Get PDF
    We propose a gauge-invariant and manifestly UV finite resummation of the physics of hard thermal/dense loops (HTL/HDL) in the thermodynamics of the quark-gluon plasma. The starting point is a simple, effectively one-loop expression for the entropy or the quark density which is derived from the fully self-consistent two-loop skeleton approximation to the free energy, but subject to further approximations, whose quality is tested in a scalar toy model. In contrast to the direct HTL/HDL-resummation of the one-loop free energy, in our approach both the leading-order (LO) and the next-to-leading order (NLO) effects of interactions are correctly reproduced and arise from kinematical regimes where the HTL/HDL are justifiable approximations. The LO effects are entirely due to the (asymptotic) thermal masses of the hard particles. The NLO ones receive contributions both from soft excitations, as described by the HTL/HDL propagators, and from corrections to the dispersion relation of the hard excitations, as given by HTL/HDL perturbation theory. The numerical evaluations of our final expressions show very good agreement with lattice data for zero-density QCD, for temperatures above twice the transition temperature.Comment: 62 pages REVTEX, 14 figures; v2: numerous clarifications, sect. 2C shortened, new material in sect. 3C; v3: more clarifications, one appendix removed, alternative implementation of the NLO effects, corrected eq. (5.16
    • 

    corecore