242 research outputs found

    Marine fisheries development in Tamil Nadu

    Get PDF
    Fisheries development is governed by the stock of fishery resources, the level and types of fishing effort and the use of diversified craft and gear. The growing Importance of fishery resources and the level of their exploitation are traced in this paper. The marine capture fisheries account for a substantial proportion of the total fish production in Tamil Nadu. The present level of fish landings, their seasonal variation and the major species groups are brought out. The developmental programme aimed at increasing fish production are reviewed. The need for innovations In and diversification of fishing methods is highlighted. The Impact of investment on fish production is analysed with a time frame of ten years. Basic needs of fisher folk which have a bearing on fisheries development are identified. Technological developments made over the last decade are mentioned with a note on the extent of non-adoption of new technology and the major determinants thereof are pointed out for remedying the situation. Culture practices in suitable areas along the coasts are stressed to provide employment opportunities that step up production. Developments in the preservation and processing of the sea foods are presented and the scope for the establishment of a stable Internal and external market is explored. The state of affairs of marine or coastal fisheries management and suggestions for toning up resource management are stressed. The need for sea ranching and SCUBA diving Is Indicated. The vital feature of training and the nature and areas of extension programmes are also pointed out for ushering In speedier development of the sector

    Fractures of the proximal humerus in children and adolescents

    Get PDF
    Background: In most children proximal humeral fractures are treated non-operatively with generally good results. The aim of the study was to evaluate the clinical outcome of closed/open reduction in children with severely displaced proximal humeral fractures. Materials and Methods: The charts of 15 patients (8 girls and 7 boys; mean age: 9.4 years) with proximal humeral fractures who were managed at our institution were reviewed from October 2011 to December 2013. Results: There were 7 metaphyseal fractures and 8 physeal injuries which were angulated according to Neer-Horowitz score as grade II (n=2), grade III(n=4) and grade IV(n=9). Associated lesions comprised open fracture with head trauma in a 2 year old female child which was operated on primarily and the 14 others by secondary intention. All patients were treated surgically with either closed (n = 5) or open (n=10) reduction and internal fixation with Kirschner wire or titanium elastic nails (TENs). They were assessed for clinical and radiological healing at a mean follow up of 1.25 years ranging from 0.5 to 2.0 years. Conclusion: Surgical option is indicated for severely displaced and unstable fractures in older children and adolescents. In addition to the periosteum , long head of the biceps, deltoid muscle, and bone fragments in combination can prevent fracture reduction. Key words: Proximal humerus fracture, Children, Open reduction, Operative

    Reactions at polymer interfaces: A Monte Carlo Simulation

    Full text link
    Reactions at a strongly segregated interface of a symmetric binary polymer blend are investigated via Monte Carlo simulations. End functionalized homopolymers of different species interact at the interface instantaneously and irreversibly to form diblock copolymers. The simulations, in the framework of the bond fluctuation model, determine the time dependence of the copolymer production in the initial and intermediate time regime for small reactant concentration ρ0Rg3=0.163...0.0406\rho_0 R_g^3=0.163 ... 0.0406. The results are compared to recent theories and simulation data of a simple reaction diffusion model. For the reactant concentration accessible in the simulation, no linear growth of the copolymer density is found in the initial regime, and a t\sqrt{t}-law is observed in the intermediate stage.Comment: to appear in Macromolecule

    Potential role of fibroblast-like synoviocytes in joint damage induced by Brucella abortus infection through production and induction of matrix metalloproteinases

    Get PDF
    Arthritis is one of the most common complications of human brucellosis, but its pathogenic mechanisms have not been elucidated. Fibroblast-like synoviocytes (FLS) are known to be central mediators of joint damage in inflammatory arthritides through the production of matrix metalloproteinases (MMPs) that degrade collagen and of cytokines and chemokines that mediate the recruitment and activation of leukocytes. In this study we show that Brucella abortus infects and replicates in human FLS (SW982 cell line) in vitro and that infection results in the production of MMP-2 and proinflammatory mediators (interleukin-6 [IL-6], IL-8, monocyte chemotactic protein 1 [MCP-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Culture supernatants from Brucella-infected FLS induced the migration of monocytes and neutrophils in vitro and also induced these cells to secrete MMP-9 in a GM-CSF- and IL-6-dependent fashion, respectively. Reciprocally, culture supernatants from Brucella-infected monocytes and neutrophils induced FLS to produce MMP-2 in a tumor necrosis factor alpha (TNF-α)-dependent fashion. The secretion of proinflammatory mediators and MMP-2 by FLS did not depend on bacterial viability, since it was also induced by heat-killed B. abortus (HKBA) and by a model Brucella lipoprotein (L-Omp19). These responses were mediated by the recognition of B. abortus antigens through Toll-like receptor 2. The intra-articular injection of HKBA or L-Omp19 into the knee joint of mice resulted in the local induction of the proinflammatory mediators MMP-2 and MMP-9 and in the generation of a mixed inflammatory infiltrate. These results suggest that FLS, and phagocytes recruited by them to the infection focus, may be involved in joint damage during brucellar arthritis through the production of MMPs and proinflammatory mediators.Fil: Scian, Romina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: de Simone, Emilio Adrian. Universidad de Buenos Aires. Facultad de Cs.veterinarias. Catedra de Fisiologia Animal; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; ArgentinaFil: Vanzulli, Silvia I.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Fossati, Carlos Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Baldi, Pablo Cesar. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral "Profesor R. A. Margni"; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    Expression Screening of Fusion Partners from an E. coli Genome for Soluble Expression of Recombinant Proteins in a Cell-Free Protein Synthesis System

    Get PDF
    While access to soluble recombinant proteins is essential for a number of proteome studies, preparation of purified functional proteins is often limited by the protein solubility. In this study, potent solubility-enhancing fusion partners were screened from the repertoire of endogenous E. coli proteins. Based on the presumed correlation between the intracellular abundance and folding efficiency of proteins, PCR-amplified ORFs of a series of highly abundant E. coli proteins were fused with aggregation-prone heterologous proteins and then directly expressed for quantitative estimation of the expression efficiency of soluble translation products. Through two-step screening procedures involving the expression of 552 fusion constructs targeted against a series of cytokine proteins, we were able to discover a number of endogenous E. coli proteins that dramatically enhanced the soluble expression of the target proteins. This strategy of cell-free expression screening can be extended to quantitative, global analysis of genomic resources for various purposes.National Research Foundation of KoreaKorea (South). Ministry of Education, Science and Technology (MEST) (grant 2011K000841)Korea (South). Ministry of Education, Science and Technology (MEST) (grant 2011-0027901

    Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    Get PDF
    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm

    Get PDF
    A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo

    Interplay of Protein and DNA Structure Revealed in Simulations of the lac Operon

    Get PDF
    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information. © 2013 Czapla et al

    Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization

    Get PDF
    Metabolic network reconstructions represent valuable scaffolds for ‘-omics’ data integration and are used to computationally interrogate network properties. However, they do not explicitly account for the synthesis of macromolecules (i.e., proteins and RNA). Here, we present the first genome-scale, fine-grained reconstruction of Escherichia coli's transcriptional and translational machinery, which produces 423 functional gene products in a sequence-specific manner and accounts for all necessary chemical transformations. Legacy data from over 500 publications and three databases were reviewed, and many pathways were considered, including stable RNA maturation and modification, protein complex formation, and iron–sulfur cluster biogenesis. This reconstruction represents the most comprehensive knowledge base for these important cellular functions in E. coli and is unique in its scope. Furthermore, it was converted into a mathematical model and used to: (1) quantitatively integrate gene expression data as reaction constraints and (2) compute functional network states, which were compared to reported experimental data. For example, the model predicted accurately the ribosome production, without any parameterization. Also, in silico rRNA operon deletion suggested that a high RNA polymerase density on the remaining rRNA operons is needed to reproduce the reported experimental ribosome numbers. Moreover, functional protein modules were determined, and many were found to contain gene products from multiple subsystems, highlighting the functional interaction of these proteins. This genome-scale reconstruction of E. coli's transcriptional and translational machinery presents a milestone in systems biology because it will enable quantitative integration of ‘-omics’ datasets and thus the study of the mechanistic principles underlying the genotype–phenotype relationship
    corecore