121 research outputs found

    Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G

    Get PDF
    We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant \textit{G}. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic clouds, was specifically designed to reduce possible systematic effects. We present instrument performances and show that the sensor is able to detect the gravitational field induced by source masses. A discussion of projected accuracy for \textit{G} measurement using this new scheme shows that the results of the experiment will be significant to discriminate between previous inconsistent values.Comment: 9 pages,9 figures, Submitte

    Production of a chromium Bose-Einstein condensate

    Full text link
    The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {Ό\mu}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have been predicted in the past and can now be studied experimentally. Besides these phenomena, the large dipole moment leads to a breakdown of standard methods for the creation of a chromium BEC. Cooling and trapping methods had to be adapted to the special electronic structure of chromium to reach the regime of quantum degeneracy. Some of them apply generally to gases with large dipolar forces. We present here a detailed discussion of the experimental techniques which are used to create a chromium BEC and alow us to produce pure condensates with up to {10510^5} atoms in an optical dipole trap. We also describe the methods used to determine the trapping parameters.Comment: 17 pages, 9 figure

    Sub-hertz frequency stabilization of a commercial diode laser

    Full text link
    We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The absolute stability of the diode laser after locking is measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of 2.95×10−152.95\times10^{-15} at 1 s, corresponding to only 0.93 Hz linewidth, even without vibration isolation of the reference cavity.Comment: 9 pages, 3 figure

    Uniformizing the Stacks of Abelian Sheaves

    Full text link
    Elliptic sheaves (which are related to Drinfeld modules) were introduced by Drinfeld and further studied by Laumon--Rapoport--Stuhler and others. They can be viewed as function field analogues of elliptic curves and hence are objects "of dimension 1". Their higher dimensional generalisations are called abelian sheaves. In the analogy between function fields and number fields, abelian sheaves are counterparts of abelian varieties. In this article we study the moduli spaces of abelian sheaves and prove that they are algebraic stacks. We further transfer results of Cerednik--Drinfeld and Rapoport--Zink on the uniformization of Shimura varieties to the setting of abelian sheaves. Actually the analogy of the Cerednik--Drinfeld uniformization is nothing but the uniformization of the moduli schemes of Drinfeld modules by the Drinfeld upper half space. Our results generalise this uniformization. The proof closely follows the ideas of Rapoport--Zink. In particular, analogies of pp-divisible groups play an important role. As a crucial intermediate step we prove that in a family of abelian sheaves with good reduction at infinity, the set of points where the abelian sheaf is uniformizable in the sense of Anderson, is formally closed.Comment: Final version, appears in "Number Fields and Function Fields - Two Parallel Worlds", Papers from the 4th Conference held on Texel Island, April 2004, edited by G. van der Geer, B. Moonen, R. Schoo

    The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

    Get PDF
    The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1\times10^-15 at 1 s integration time and relative inaccuracy below 5\times10^-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In this paper we present the project and the results achieved during the first year.Comment: Contribution to European Frequency and Time Forum 2012, Gothenburg, Swede

    Controlling the quantum stereodynamics of ultracold bimolecular reactions

    Full text link
    Chemical reaction rates often depend strongly on stereodynamics, namely the orientation and movement of molecules in three-dimensional space. An ultracold molecular gas, with a temperature below 1 uK, provides a highly unusual regime for chemistry, where polar molecules can easily be oriented using an external electric field and where, moreover, the motion of two colliding molecules is strictly quantized. Recently, atom-exchange reactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these exothermic and barrierless bimolecular reactions, KRb+KRb -> K2+Rb2, occur at a rate that rises steeply with increasing dipole moment. Here we show that the quantum stereodynamics of the ultracold collisions can be exploited to suppress the bimolecular chemical reaction rate by nearly two orders of magnitude. We use an optical lattice trap to confine the fermionic polar molecules in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each other only in a "side-by-side" collision, where the chemical reaction rate is suppressed by the repulsive dipole-dipole interaction. We show that the suppression of the bimolecular reaction rate requires quantum-state control of both the internal and external degrees of freedom of the molecules. The suppression of chemical reactions for polar molecules in a quasi-two-dimensional trap opens the way for investigation of a dipolar molecular quantum gas. Because of the strong, long-range character of the dipole-dipole interactions, such a gas brings fundamentally new abilities to quantum-gas-based studies of strongly correlated many-body physics, where quantum phase transitions and new states of matter can emerge.Comment: 19 pages, 4 figure

    Development of a strontium optical lattice clock for the SOC mission on the ISS

    Get PDF
    Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the International Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus' development, including the laser subsystems. Robust preparation of cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.Comment: 27 Pages, 15 figures, Comptes Rendus Physique 201

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    Development of a strontium optical lattice clock for the SOC mission on the ISS

    Get PDF
    The ESA mission "Space Optical Clock" project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than 1×10−171 \times 10^{-17} uncertainty and 1×10−15τ−1/21 \times 10^{-15} {\tau}^{-1/2} instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below 1×10−15τ−1/21 \times 10^{-15} {\tau}^{-1/2} and fractional inaccuracy 5×10−175 \times 10^{-17}. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in 88^{88}Sr was observed with linewidth as small as 9 Hz.Comment: 12 pages, 8 figures, SPIE Photonics Europe 201

    Magnetic trapping of metastable 3P2^3P_2 atomic strontium

    Get PDF
    We report the magnetic trapping of metastable 3P2^3P_2 atomic strontium. Atoms are cooled in a magneto-optical trap (MOT) operating on the dipole allowed 1S0−1P1^1S_0-^1P_1 transition at 461 nm. Decay via 1P1→1D2→3P2^1P_1\to {^1D_2}\to {^3P_2} continuously loads a magnetic trap formed by the quadrupole magnetic field of the MOT. Over 10810^8 atoms at a density of 8×1098 \times 10^9 cm−3^{-3} and temperature of 1 mK are trapped. The atom temperature is significantly lower than what would be expected from the kinetic and potential energy of atoms as they are transferred from the MOT. This suggests that thermalization and evaporative cooling are occurring in the magnetic trap.Comment: This paper has been accepted by PR
    • 

    corecore