126 research outputs found

    microRNA-324 mediates bone homeostasis and the regulation of osteoblast and osteoclast differentiation and activity

    Get PDF
    \ua9 2024 The Author(s). MicroRNAs (miRNAs) modulate the expression of other RNA molecules. One miRNA can target many transcripts, allowing each miRNA to play key roles in many biological pathways. Defects in bone homeostasis result in common age-related diseases including osteoporosis. Serum levels of miR-324-3p positively correlate with several features of bone maintenance. In contrast here, using in vivo micro-computed tomography and histology, global miR-324-null mice demonstrated increased bone mineral density and both trabecular and cortical thickness, with effect magnitudes increasing with age. The bone marrow of miR-324-null mice had reduced lipid content while TRAP staining revealed a decrease in osteoclasts, with histomorphometry demonstrating an increased rate of bone formation. Ex vivo assays showed that the high bone mass phenotype of miR-324-null mice resulted from both increased osteoblast activity and decreased osteoclastogenesis. RNA-seq analysis of osteoblasts, osteoclasts and bone marrow macrophages and target validation assays identified that the osteoclast fusion regulator Pin1 and the master osteogenic regulator Runx2 were targets of miR-324-5p in osteoclast lineage cells and osteoblasts, respectively. Indeed, in vitro Runx2 overexpression recapitulated the increased osteogenesis and decreased adipogenesis phenotype observed in vivo by the loss of miR-324. Overall, these data demonstrate the importance of miR-324 in bone homeostasis by regulating aspects of both bone formation and remodelling. Elucidation of pathways regulated by miR-324 offer promise for the treatment of bone diseases such as osteoporosis

    microRNA-seq of cartilage reveals an over-abundance of miR-140-3p which contains functional isomiRs

    Get PDF
    miR-140 is selectively expressed in cartilage. Deletion of the entire Mir140 locus in mice results in growth retardation and early-onset osteoarthritis-like pathology; however, the relative contribution of miR-140-5p or miR-140-3p to the phenotype remains to be determined. An unbiased small RNA sequencing approach identified miR-140-3p as significantly more abundant (>10-fold) than miR-140-5p in human cartilage. Analysis of these data identified multiple miR-140-3p isomiRs differing from the miRBase annotation at both the 5' and 3' end, with >99% having one of two seed sequences (5' bases 2-8). Canonical (miR-140-3p.2) and shifted (miR-140-3p.1) seed isomiRs were overexpressed in chondrocytes and transcriptomics performed to identify targets. miR-140-3p.1 and miR-140-3p.2 significantly down-regulated 694 and 238 genes, respectively, of which only 162 genes were commonly down-regulated. IsomiR targets were validated using 3'UTR luciferase assays. miR-140-3p.1 targets were enriched within up-regulated genes in rib chondrocytes of Mir140- null mice and within down-regulated genes during human chondrogenesis. Finally, through imputing the expression of miR-140 from the expression of the host gene WWP2 in 124 previously published data sets, an inverse correlation with miR-140-3p.1 predicted targets was identified. Together these data suggest the novel seed containing isomiR miR-140- 3p.1 is more functional than original consensus miR-140-3p seed containing isomiR

    Neuroprotective therapies in the NICU in term infants: present and future

    Get PDF
    Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30–50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH

    Evaluation of uptake and attitude to voluntary counseling and testing among health care professional students in Kilimanjaro region, Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Voluntary counseling and testing (VCT) is a corner stone for successful implementation of prevention, care and support services among HIV negative and positive individuals. VCT is also perceived to be an effective strategy in risk reduction among sexually active young people.. This study aimed to assess the acceptability of VCT and its actual uptake among young health care professional students at KCM College of Tumaini University and Allied health schools.</p> <p>Methods</p> <p>This was a cross-sectional study. A structured questionnaire was used among health care professional students aged 18–25 years who were enrolled in degrees, diplomas and certificates courses at Kilimanjaro Christian Medical College and all other Allied health schools</p> <p>Results</p> <p>A total of 309 students were recruited, among these 197 (63.8%) were females. All respondents were aware of the benefits of VCT. Only 107 (34.6%) of students have had VCT done previously. About 59 (19.1%) of the students had negative for health care professional to attend VCT. Risk perception among the students was low (37.2%) even though they were found to have higher risk behaviors that predispose them to get HIV infection.</p> <p>Conclusion</p> <p>Awareness of VCT services and willingness to test is high among students; however its uptake is low. In order to promote these services, a comprehensive training module on VCT needs to be included in their training curricula. In particular, more emphasis should focus on the benefits of VCT and to help the students to internalize the risk of HIV so that they can take preventive measures.</p

    Increased hippocampal excitability in miR-324-null mice

    Get PDF
    MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3′UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes

    On-farm maize storage systems and rodent postharvest losses in six maize growing agro-ecological zones of Kenya

    Get PDF
    Rodents are one of the major postharvest pests that affect food security by impacting on both food availability and safety. However, knowledge of the impact of rodents in on-farm maize storage systems in Kenya is limited. A survey was conducted in 2014 to assess magnitudes of postharvest losses in on-farm maize storage systems in Kenya, and the contribution of rodents to the losses. A total of 630 farmers spread across six maize growing agro-ecological zones (AEZs) were interviewed. Insects, rodents and moulds were the main storage problems reported by farmers. Storage losses were highest in the moist transitional and moist mid-altitude zones, and lowest in the dry-transitional zone. Overall, rodents represented the second most important cause of storage losses after insects, and were ranked as the main storage problem in the lowland tropical zone, while insects were the main storage problem in the other AEZs. Where maize was stored on cobs, total farmer perceived (farmer estimation) storage weight losses were 11.1 ± 0.7 %, with rodents causing up to 43 % of these losses. Contrastingly, where maize was stored as shelled grain, the losses were 15.5 ± 0.6 % with rodents accounting for up to 30 %. Regression analysis showed that rodents contributed significantly to total storage losses (p < 0.0001), and identified rodent trapping as the main storage practice that significantly (p = 0.001) lowered the losses. Together with insecticides, rodent traps were found to significantly decrease total losses. Improved awareness and application of these practices could mitigate losses in on farm-stored maize

    Accelerating functional gene discovery in osteoarthritis

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease
    • …
    corecore