996 research outputs found

    Vertex Intrinsic Fitness: How to Produce Arbitrary Scale-Free Networks

    Full text link
    We study a recent model of random networks based on the presence of an intrinsic character of the vertices called fitness. The vertices fitnesses are drawn from a given probability distribution density. The edges between pair of vertices are drawn according to a linking probability function depending on the fitnesses of the two vertices involved. We study here different choices for the probability distribution densities and the linking functions. We find that, irrespective of the particular choices, the generation of scale-free networks is straightforward. We then derive the general conditions under which scale-free behavior appears. This model could then represent a possible explanation for the ubiquity and robustness of such structures.Comment: 4 pages, 3 figures, RevTe

    Overview of progress in neutrino scattering measurements

    Full text link
    Recent progress in neutrino scattering experiments with few GeV neutrino beams is reviewed, focusing on new experimental input since the beginning of the NuInt workshop series in 2001. Progress in neutrino quasi-elastic scattering, resonance production, coherent pion production, scattering in the transition region between the resonance and deep inelastic regimes, and nuclear effects in neutrino-nucleus scattering, is discussed.Comment: To appear in the proceedings of 5th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07), Batavia, Illinois, 30 May - 3 Jun 2007. Submitted to AIP Conf.Pro

    Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?

    Full text link
    The weak mixing angle result from NuTeV falls three standard deviations above the value determined by global electroweak fits. It has been suggested that one possible explanation for this result could be the oscillation of electron neutrinos in the NuTeV beam to sterile neutrinos. This article examines several cases of masses and mixings for 3+2 neutrino oscillation models which fit the current oscillation data at 99% CL. We conclude that electron to sterile neutrino oscillations can account for only up to a third of a standard deviation between the NuTeV determination of the weak mixing angle and the standard model.Comment: 3 pages, 2 figures, submitted to Brief Report

    Exploring multi-stability in semiconductor ring lasers: theory and experiment

    Get PDF
    We report the first experimental observation of multi-stable states in a single-longitudinal mode semiconductor ring laser. We show how the operation of the device can be steered to either monostable, bistable or multi-stable dynamical regimes in a controlled way. We observe that the dynamical regimes are organized in well reproducible sequences that match the bifurcation diagrams of a two-dimensional model. By analyzing the phase space in this model, we predict how the stochastic transitions between multi-stable states take place and confirm it experimentally.Comment: 4 pages, 5 figure

    Topological insight into the non-Arrhenius mode hopping of semiconductor ring lasers

    Get PDF
    We investigate both theoretically and experimentally the stochastic switching between two counter-propagating lasing modes of a semiconductor ring laser. Experimentally, the residence time distribution cannot be described by a simple one parameter Arrhenius exponential law and reveals the presence of two different mode-hop scenarios with distinct time scales. In order to elucidate the origin of these two time scales, we propose a topological approach based on a two-dimensional dynamical system.Comment: 4 pages, 3 figure

    Neutrino interactions with nuclei

    Full text link
    We present a model for neutrino-nucleus scattering in the energy region relevant for present and forthcoming neutrino-oscillation experiments. The model is based on the RPA treatment of the nuclear responses in the quasi-elastic and Delta-resonance region. It includes also in a phenomenological way nucleon knock-out. It aims at the description, within a single framework, of several final state channels i.e. quasi-elastic, incoherent and coherent one-pion production and two- or several-nucleon knock-out.Comment: To appear in the proceedings of 6th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt09), Sitges, Spain, 18 - 22 May 200

    MiniBooNE

    Full text link
    The physics motivations, design, and status of the Booster Neutrino Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis is given on the ongoing preparatory work that is needed for the MiniBooNE muon neutrino to electron neutrino oscillation appearance search. This search aims to confirm or refute in a definitive and independent way the evidence for neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10-14 Sep 200

    Investigation of mid-infrared AlInSb LEDs with an n-i-p structure

    Get PDF
    We report on the investigation on mid-infrared AlInSb LEDs with an n-i-p structure. Compared to the conventional AlInSb LEDs with a p-i-n structure, a better current spreading corresponding to a uniform current distribution in the active region is expected in the n-i-p structure because of a high electron mobility in the n-type AlInSb material. The output optical power of laterally injected LEDs were investigated as a function of the device geometry by COMSOL simulations and confirmed by experimental results

    The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency

    Get PDF
    Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties

    Ultrashort Q-switched pulses from a passively mode-locked distributed Bragg reflector semiconductor laser

    Get PDF
    A compact semiconductor mode-locked laser (MLL) is presented that demonstrates strong passive Q-switched mode-locking over a wide range of drive conditions. The Q-switched frequency is tunable between 1 and 4 GHz for mode-locked pulses widths around 3.5 ps. The maximum ratio of peak to average power of the pulse-train is >120, greatly exceeding that of similarly sized passively MLLs
    • …
    corecore