1,234 research outputs found

    Development of a high efficiency thin silicon solar cell

    Get PDF
    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%

    Aqueous Free-Radical Polymerization of Non-Ionized and Fully Ionized Methacrylic Acid

    Get PDF
    Water-soluble, carboxylic acid monomers are known to exhibit peculiar kinetics when polymerized in aqueous solution. Namely, their free-radical polymerization rate is affected by several parameters such as monomer concentration, ionic strength, and pH. Focusing on methacrylic acid (MAA), even though this monomer has been largely addressed, a systematic investigation of the effects of the above-mentioned parameters on its polymerization rate is missing, in particular in the fully ionized case. In this work, the kinetics of non-ionized and fully ionized MAA are characterized by in-situ nuclear magnetic resonance (NMR). Such accurate monitoring of the reaction rate enables the identification of relevant but substantially different effects of the monomer and electrolyte concentration on polymerization rate in the two ionization cases. For non-ionized MAA, the development of a kinetic model based on literature rate coefficients allows us to nicely simulate the experimental data of conversion versus time at a high monomer concentration. For fully ionized MAA, a novel propagation rate law accounting for the electrostatic interactions is proposed: the corresponding model is capable of predicting reasonably well the electrolyte concentration effect on polymerization rate. Nevertheless, further kinetic information in a wider range of monomer concentrations would be welcome to increase the reliability of the model predictions

    Coplanar back contacts for thin silicon solar cells

    Get PDF
    The type of coplanar back contact solar cell described was constructed with interdigitated n(+) and p(+) type regions on the back of the cell, such that both contacts are made on the back with no metallization grid on the front. This cell construction has several potential advantages over conventional cells for space use namely, convenience of interconnects, lower operating temperatures and higher efficiency due to the elimination of grid shadowing. However, the processing is more complex, and the cell is inherently more radiation sensitive. The latter problem can be reduced substantially by making the cells very thin (approximately 50 micrometers). Two types of interdigitated back contact cells are possible, the types being dependent on the character of the front surface. The front surface field cell has a front surface region that is of the same conductivity type as the bulk but is more heavily doped. This creates an electric field at the surface which repels the minority carriers. The tandem junction cell has a front surface region of a conductivity type that is opposite to that of the bulk. The junction thus created floats to open circuit voltage on illumination and injects carriers into the bulk which then can be collected at the rear junction. For space use, the front surface field cell is potentially more radiation resistant than the tandem junction cell because the flow of minority carriers (electrons) into the bulk will be less sensitive to the production of recombination centers, particularly in the space charge region at the front surface

    Thin cells for space

    Get PDF
    Research and pilot line production efforts directed towards the fabrication of high efficiency ultrathin silicon solar cells (50 micrometers) are reported. Conventional ultrathin cells with air-mass-zero (AM0) efficiencies exceeding 14% and coplanar back contact cells with AM0 efficiencies up to 11.7% were developed. The primary mechanisms limiting efficiency were determined in both types of cells, and they are discussed within the context of further improving efficiency. Results of pilot line production of conventional ultrathin cells are also presented. Average AM0 efficiencies of 12% were readily achieved for 2000 cell production runs

    Development of an Improved High Efficiency Thin Solar Cell

    Get PDF
    High efficiency cells (up to 14 AMO at 25 C)were fabricated from 10 - 15 ohm-cm silicon by using screen printed aluminum paste as the alloy source for the production of back surface fields. Thick consistency pastes that have been cured prior to a short heat treatment at 850 C were most effective in achieving these efficiency levels

    A virtual sensor for electric vehicles’ state of charge estimation

    Get PDF
    The estimation of the state of charge is a critical function in the operation of electric vehicles. The battery management system must provide accurate information about the battery state, even in the presence of failures in the vehicle sensors. This article presents a new methodology for the state of charge estimation (SOC) in electric vehicles without the use of a battery current sensor, relying on a virtual sensor, based on other available vehicle measurements, such as speed, battery voltage and acceleration pedal position. The estimator was derived from experimental data, employing support vector regression (SVR), principal component analysis (PCA) and a dual polarization (DP) battery model (BM). It is shown that the obtained model is able to predict the state of charge of the battery with acceptable precision in the case of a failure of the current sensor

    Functionalized lactic acid macromonomers polycondensation

    Get PDF
    Please click Additional Files below to see the full abstrac

    Modeling of the degradation of poly(ethylene glycol)-co-(lactic acid)-dimethacrylate hydrogels

    Get PDF
    Because of their similarity with extracellular matrix, hydrogels are ideal substrates for cell growth. Hydrogels made of synthetic polymers are excellent alternatives to natural ones and offer the key advantage of precisely controllable degradation times. In this work, hydrogels have been prepared from modified poly(ethylene glycol) macromonomers, functionalized on both ends first with a few lactic acid units, and then with methacrylate groups. A library of hydrogels has been prepared using free- radical polymerization of the macromonomers, by changing both the macromonomer concentration and their type, i.e., the number of lactic acid repeating units. The degradation kinetics of these hydrogels, caused by the hydrolysis of the lactic acid units, have been carefully monitored in terms of swelling ratio, mass loss, and Young’s modulus. A complete mathematical model, accounting for hydrogel degradation, swelling, and reverse gelation, has been developed and used to predict all the measured quantities until complete disappearance of the gels. The model is capable of accurately predicting the time evolution of all the properties investigated experimentally. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and experimental data is presented

    Adipose-derived stem/stromal cells in kidney transplantation: Status quo and future perspectives

    Get PDF
    Kidney transplantation (KT) is the gold standard treatment of end-stage renal disease. Despite progressive advances in organ preservation, surgical technique, intensive care, and immunosuppression, long-term allograft survival has not significantly improved. Among the many peri-operative complications that can jeopardize transplant outcomes, ischemia-reperfusion injury (IRI) deserves special consideration as it is associated with delayed graft function, acute rejection, and premature transplant loss. Over the years, several strategies have been proposed to mitigate the impact of IRI and favor tolerance, with rather disappointing results. There is mounting evidence that adipose stem/stromal cells (ASCs) possess specific characteristics that could help prevent, reduce, or reverse IRI. Immunomodulating and tolerogenic properties have also been suggested, thus leading to the development of ASC-based prophylactic and therapeutic strategies in pre-clinical and clinical models of renal IRI and allograft rejection. ASCs are copious, easy to harvest, and readily expandable in culture. Furthermore, ASCs can secrete extracellular vesicles (EV) which may act as powerful mediators of tissue repair and tolerance. In the present review, we discuss the current knowledge on the mechanisms of action and therapeutic opportunities offered by ASCs and ASC-derived EVs in the KT setting. Most relevant pre-clinical and clinical studies as well as actual limitations and future perspective are highlighted
    • …
    corecore