156 research outputs found
Stable propagation of an ordered array of cracks during directional drying
We study the appearance and evolution of an array of parallel cracks in a
thin slab of material that is directionally dried, and show that the cracks
penetrate the material uniformly if the drying front is sufficiently sharp. We
also show that cracks have a tendency to become evenly spaced during the
penetration. The typical distance between cracks is mainly governed by the
typical distance of the pattern at the surface, and it is not modified during
the penetration. Our results agree with recent experimental work, and can be
extended to three dimensions to describe the properties of columnar polygonal
patterns observed in some geological formations.Comment: 8 pages, 4 figures, to appear in PR
P53 germline mutations in childhood cancers and cancer risk for carrier individuals
The family history of cancer in children treated for a solid malignant tumour in the Paediatric Oncology Department at Institute Gustave-Roussy, has been investigated. In order to determine the role of germline p53 mutations in genetic predisposition to childhood cancer, germline p53 mutations were sought in individuals with at least one relative (first- or second-degree relative or first cousin) affected by any cancer before 46 years of age, or affected by multiple cancers. Screening for germline p53 mutation was possible in 268 index cases among individuals fulfilling selection criteria. Seventeen (6.3%) mutations were identified, of which 13 were inherited and four were de novo. Using maximum likelihood methods that incorporate retrospective family data and correct for ascertainment bias, the lifetime risk of cancer for mutation carriers was estimated to be 73% for males and nearly 100% for females with a high risk of breast cancer accounting for the difference. The risk of cancer associated with such mutations is very high and no evidence of low penetrance mutation was found. These mutations are frequently inherited but de novo mutations are not rare. © 2000 Cancer Research Campaig
Theory of dynamic crack branching in brittle materials
The problem of dynamic symmetric branching of an initial single brittle crack
propagating at a given speed under plane loading conditions is studied within a
continuum mechanics approach. Griffith's energy criterion and the principle of
local symmetry are used to determine the cracks paths. The bifurcation is
predicted at a given critical speed and at a specific branching angle: both
correlated very well with experiments. The curvature of the subsequent branches
is also studied: the sign of , with being the non singular stress at the
initial crack tip, separates branches paths that diverge from or converge to
the initial path, a feature that may be tested in future experiments. The model
rests on a scenario of crack branching with some reasonable assumptions based
on general considerations and in exact dynamic results for anti-plane
branching. It is argued that it is possible to use a static analysis of the
crack bifurcation for plane loading as a good approximation to the dynamical
case. The results are interesting since they explain within a continuum
mechanics approach the main features of the branching instabilities of fast
cracks in brittle materials, i.e. critical speeds, branching angle and the
geometry of subsequent branches paths.Comment: 41 pages, 15 figures. Accepted to International Journal of Fractur
Thermal fracture as a framework for quasi-static crack propagation
We address analytically and numerically the problem of crack path prediction
in the model system of a crack propagating under thermal loading. We show that
one can explain the instability from a straight to a wavy crack propagation by
using only the principle of local symmetry and the Griffith criterion. We then
argue that the calculations of the stress intensity factors can be combined
with the standard crack propagation criteria to obtain the evolution equation
for the crack tip within any loading configuration. The theoretical results of
the thermal crack problem agree with the numerical simulations we performed
using a phase field model. Moreover, it turns out that the phase-field model
allows to clarify the nature of the transition between straight and oscillatory
cracks which is shown to be supercritical.Comment: 19 pages, 8 figure
Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2
BACKGROUND: The envelope (Env) protein of jaagsiekte sheep retrovirus (JSRV) can transform cells in culture and is likely to be the main factor responsible for lung cancer induction by JSRV in animals. A recent report indicates that the epithelial-cell transforming activity of JSRV Env depends on activation of the cell-surface receptor tyrosine kinase Mst1r (called RON for the human and Stk for the rodent orthologs). In the immortalized line of human epithelial cells used (BEAS-2B cells), the virus receptor Hyal2 was found to bind to and suppress the activity of RON. When Env was expressed it bound to Hyal2 causing its degradation, release of RON activity from Hyal2 suppression, and activation of pathways resulting in cell transformation. METHODS: Due to difficulty with reproducibility of the transformation assay in BEAS-2B cells, we have used more tractable rodent fibroblast models to further study Hyal2 modulation of RON/Stk transforming activity and potential effects of Hyal2 on RON/Stk activation by its natural ligand, macrophage stimulating protein (MSP). RESULTS: We did not detect transformation of NIH 3T3 cells by plasmids expressing RON or Stk, but did detect transformation of 208F rat fibroblasts by these plasmids at a very low rate. We were able to isolate 208F cell clones that expressed RON or Stk and that showed changes in morphology indicative of transformation. The parental 208F cells did not respond to MSP but 208F cells expressing RON or Stk showed obvious increases in scattering/transformation in response to MSP. Human Hyal2 had no effect on the basal or MSP-induced phenotypes of RON-expressing 208F cells, and human, mouse or rat Hyal2 had no effect on the basal or MSP-induced phenotypes of Stk-expressing 208F cells. CONCLUSIONS: We have shown that RON or Stk expression in 208F rat fibroblasts results in a transformed phenotype that is enhanced by addition of the natural ligand for these proteins, MSP. Hyal2 does not directly modulate the basal or MSP-induced RON/Stk activity, although it is possible that adaptor proteins might mediate such signaling in other cell types
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems
- …