3,984 research outputs found
Cheating, incentives, and money manipulation
We use different incentive schemes to study truth-telling in a die-roll task when people are asked to reveal the number rolled privately. We find no significant evidence of cheating when there are no financial incentives associated with the reports, but do find evidence of such when the reports determine financial gains or losses (in different treatments). We find no evidence of loss aversion in the standard case in which subjects receive their earnings in a sealed envelope at the end of the session. When subjects manipulate the possible earnings, we find evidence of less cheating, particularly in the loss setting; in fact, there is no significant difference in behavior between the non-incentivized case and the loss setting with money manipulation. We interpret our findings in terms of the moral cost of cheating and differences in the perceived trust and beliefs in the gain and the loss frames
On the Cauchy problem for a nonlinearly dispersive wave equation
We establish the local well-posedness for a new nonlinearly dispersive wave
equation and we show that the equation has solutions that exist for indefinite
times as well as solutions which blowup in finite times. Furthermore, we derive
an explosion criterion for the equation and we give a sharp estimate from below
for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia
Recommended from our members
Experimental system design for the integration of trapped-ion and superconducting qubit systems
We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi:10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology
The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers
The AMY experiment aims to measure the microwave bremsstrahlung radiation
(MBR) emitted by air-showers secondary electrons accelerating in collisions
with neutral molecules of the atmosphere. The measurements are performed using
a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN
National Laboratories. The goal of the AMY experiment is to measure in
laboratory conditions the yield and the spectrum of the GHz emission in the
frequency range between 1 and 20 GHz. The final purpose is to characterise the
process to be used in a next generation detectors of ultra-high energy cosmic
rays. A description of the experimental setup and the first results are
presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High
Energy Physics (July, 18-24, 2013) at Stockholm, Swede
- …