511 research outputs found

    A Limited Role for Retinoic Acid and Retinoic Acid Receptors RARĪ± and RARĪ² in Regulating Keratin 19 Expression and Keratinization in Oral and Epidermal Keratinocytes

    Get PDF
    Different types of stratified squamous epitheliaā€”for example, the ā€œorthokeratinizedā€ epidermis, the ā€œparakeratinizedā€ gingiva, and the ā€œnonkeratinizedā€ oral lining mucosal epitheliaā€”are formed by intrinsically distinct keratinocyte subtypes. These subtypes exhibit characteristic patterns of keratin protein expression in vivo and in culture. Keratin 19 is an informative subtype-specific marker because the basal cells of only nonkeratinizing epithelia express K19 in vivo and in culture. Epidermal keratinocytes normally do not express K19, but can be induced to do so in culture by retinoic acid (RA). Keratinocyte subtypes express the retinoic acid receptor (RAR)Ī² at levels roughly correlated with their level of K19 expression in culture and their potential for forming a nonkeratinized epithelium in vivo. We tested the hypothesis that the level of RARĪ² expressed by a keratinocyte determines its K19 expression and its form of suprabasal differentiation. Normal human epidermal and gingival keratinocytes stably overexpressing either RARĪ² or RARĪ± were generated by defective retroviral transduction. Overexpression of either receptor enhanced the RA inducibility of K19 in conventional culture, in that the proportion of the transductants becoming K19+ in response to RA was markedly increased compared with controls. The pattern of differentiation of the epithelium formed in organotypic culture, assessed by basal K19 and suprabasal K1, K4, and filaggrin expression, however, was unaltered by PAR overexpression. Thus, the susceptibility of keratinocytes to regulation of K19 expression by retinoids is conditional, and levels of neither RARĪ² nor RARĪ± are limiting to the intrinsic mechanism that specifies alternate differentiation pathways for stratified squamous epithelia

    Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    Get PDF
    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5ā€“14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1Ɨ104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87ā€“2.41Ɨ106 cells) in 12ā€“14 days, representing 187ā€“241 fold expansion with over 7ā€“8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin Ī²1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    Overexpression of the Axl tyrosine kinase receptor in cutaneous SCC-derived cell lines and tumours

    Get PDF
    The molecular mechanisms that underlie the development of squamous cell skin cancers (SSC) are poorly understood. We have used oligonucleotide microarrays to compare the differences in cellular gene expression between a series of keratinocyte cell that mimic disease progression with the aim of identifying genes that may potentially contribute towards squamous cell carcinoma (SCC) progression in vivo, and in particular to identify markers that may serve as potential therapeutic targets for SCC treatment. Gene expression differences were corroborated by polymerase chain reaction and Western blotting. We identified Axl, a receptor tyrosine kinase with transforming potential that has also been shown to have a role in cell survival, adhesion and chemotaxis, was upregulated in vitro in SCC-derived cells compared to premalignant cells. Extending the investigation to tumour biopsies showed that the Axl protein was overexpressed in vivo in a series of SCCs

    Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes.</p> <p>Methods</p> <p>We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods.</p> <p>Results</p> <p>COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional <it>in vitro </it>models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays <it>in vivo</it>, and do not develop tumorigenic ability.</p> <p>Conclusions</p> <p>We propose that COCA constitutes a good experimental system for <it>in vitro </it>and <it>in vivo </it>skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations.</p

    Functional Characterization of Cultured Keratinocytes after Acute Cutaneous Burn Injury

    Get PDF
    In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable--keratinocyte-derived--cytokine and growth factor milieu. In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters. Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1Ī±, IL-2, IL-4, IL-10, IFN-Ī³ and TNFĪ± could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-Ɵ und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1Ī± and IL-1Ɵ. Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients
    • ā€¦
    corecore