15,806 research outputs found

    3D modelling of enhanced surface emission using surface roughening

    Get PDF

    Multi-particle Correlations in Quaternionic Quantum Systems

    Full text link
    We investigate the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find that a multi-particle interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components.Comment: REVTeX 3.0, 16 pages, no figures, UM-P-94/54, RCHEP-94/1

    Bad Faith Prosecution

    Get PDF
    There is no shortage of claims by parties that their prosecutions are politically motivated, racially motivated, or just plain arbitrary. In our increasingly polarized society, such claims are more common than ever. Donald Trump campaigned on promises to lock up Hillary Clinton for her handling of State Department-related emails, but he subsequently complained that the special counsel\u27s investigation of his campaign\u27s alleged contacts with Russian operatives was a politically motivated witch hunt. Kenneth Starr\u27s pursuit of investigations of Bill Clinton evoked similar arguments of political motivation. The advent of progressive prosecutors will no doubt increase claims of bad faith prosecution, given their announcements of crimes they will and will not prosecute. Typically, they promise not to prosecute for lesser violations such as prostitution and drug possession. Although crime victims generally cannot complain that a perpetrator was not prosecuted, non-prosecution policies could strengthen claims of bad faith prosecution when prosecutors nevertheless prosecute some individuals for such delicts. In addition, candidates\u27 and officials\u27 statements that they intend to pursue certain individuals or groups may bolster claims of bad faith as evidenced in Donald Trump\u27s arguments of political motivation for investigations by New York Attorney General Letitia James

    Equatorial Annual Oscillation with QBO-driven 5-year Modulation in NCEP Data

    Get PDF
    An analysis is presented of the zonal wind and temperature variations supplied by the National Center for Environmental Prediction (NCEP), which have been assimilated in the Reanalysis and the Climate Prediction Center (CCP) data sets. The derived zonal-mean variations are employed. Stimulated by modeling studies, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to study the annual 12-month oscillation and Quasi-biennial Oscillation (QBO). For data samples that cover as much as 40 years, the results reveal a pronounced 5-year modulation of the symmetric AO in the lower stratosphere, which is confined to equatorial latitudes. This modulation is also inferred for the temperature variations but extends to high latitudes, qualitatively consistent with published model results. A comparison between different data samples indicates that the signature of the 5-year oscillation is larger when the QBO of 30 months is more pronounced. Thus there is circumstantial evidence that this periodicity of the QBO is involved in generating the oscillation. The spectral analysis shows that there is a weak anti-symmetric 5-year oscillation in the zonal winds, which could interact with the large antisymmetric A0 to produce the modulation of the symmetric AO as was shown in earlier modeling studies. According to these studies, the 30-month QBO tends to be synchronized by the equatorial Semi-annual Oscillation (SAO), and this would explain why the inferred 5-year modulation is observed to persist and is phase locked over several cycles

    Hot dense capsule implosion cores produced by z-pinch dynamic hohlraum radiation

    Full text link
    Hot dense capsule implosions driven by z-pinch x-rays have been measured for the first time. A ~220 eV dynamic hohlraum imploded 1.7-2.1 mm diameter gas-filled CH capsules which absorbed up to ~20 kJ of x-rays. Argon tracer atom spectra were used to measure the Te~ 1keV electron temperature and the ne ~ 1-4 x10^23 cm-3 electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak compression values of Te, ne, and symmetry, indicating reasonable understanding of the hohlraum and implosion physics.Comment: submitted to Phys. Rev. Let

    Perturbation Theory and Control in Classical or Quantum Mechanics by an Inversion Formula

    Full text link
    We consider a perturbation of an ``integrable'' Hamiltonian and give an expression for the canonical or unitary transformation which ``simplifies'' this perturbed system. The problem is to invert a functional defined on the Lie- algebra of observables. We give a bound for the perturbation in order to solve this inversion. And apply this result to a particular case of the control theory, as a first example, and to the ``quantum adiabatic transformation'', as another example.Comment: Version 8.0. 26 pages, Latex2e, final version published in J. Phys.

    A variational principle for volume-preserving dynamics

    Full text link
    We provide a variational description of any Liouville (i.e. volume preserving) autonomous vector fields on a smooth manifold. This is obtained via a ``maximal degree'' variational principle; critical sections for this are integral manifolds for the Liouville vector field. We work in coordinates and provide explicit formulae

    Singular forces and point-like colloids in lattice Boltzmann hydrodynamics

    Full text link
    We present a second-order accurate method to include arbitrary distributions of force densities in the lattice Boltzmann formulation of hydrodynamics. Our method may be used to represent singular force densities arising either from momentum-conserving internal forces or from external forces which do not conserve momentum. We validate our method with several examples involving point forces and find excellent agreement with analytical results. A minimal model for dilute sedimenting particles is presented using the method which promises a substantial gain in computational efficiency.Comment: 22 pages, 9 figures. Submitted to Phys. Rev.

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests
    • …
    corecore