7,382 research outputs found

    A Possible Massive Asteroid Belt Around zeta Lep

    Full text link
    We have used the Keck I telescope to image at 11.7 microns and 17.9 microns the dust emission around zeta Lep, a main sequence A-type star at 21.5 pc from the Sun with an infrared excess. The excess is at most marginally resolved at 17.9 microns. The dust distance from the star is probably less than or equal to 6 AU, although some dust may extend to 9 AU. The mass of observed dust is \~10^22 g. Since the lifetime of dust particles is about 10,000 years because of the Poytning-Robertson effect, we robustly estimate at least 4 10^26 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ~300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system.Comment: 12 pages, 3 figures, ApJL in pres

    New connections between finite element formulations of the Navier--Stokes equations

    Get PDF
    We show the velocity solutions to the convective, skew-symmetric, and rotational Galerkin finite element formulations of the Navier-Stokes equations are identical if Scott-Vogelius elements are used, and thus all three formulations will the same pointwise divergence free solution velocity. A connection is then established between the formulations for grad-div stabilized Taylor-Hood elements: under mild restrictions, the formulations' velocity solutions converge to each other (and to the Scott-Vogelius solution) as the stabilization parameter tends to infinity. Thus the benefits of using Scott-Vogelius elements can be obtained with the less expensive Taylor-Hood elements, and moreover the benefits of all the formulations can be retained if the rotational formulation is used. Numerical examples are provided that confirm the theory

    New optical and near-infrared Surface Brightness Fluctuations models. A primary distance indicator ranging from Globular Clusters to distant galaxies?

    Get PDF
    We present new theoretical models for Surface Brightness Fluctuations (SBF) both for optical and near-infrared bands in standard ground-based and Hubble Space Telescope filter systems. Simple Stellar Population simulations are adopted. Models cover the age and metallicity ranges from t=5t=5 to 15 Gyr15~Gyr and from Z=0.0001Z=0.0001 to 0.04 respectively. Effects due to the variation of the Initial Mass Function and the stellar color-temperature relations are explored. Particular attention is devoted to very bright stars in the color-magnitude diagram and to investigate the effects of mass loss along the Red Giant Branch (RGB) and the Asymptotic Giant Branch (AGB). It is found that UU and BB bands SBF amplitudes are powerful diagnostics for the morphology of the Horizontal Branch and the Post-AGB stars population. We point out that a careful treatment of mass loss process along the RGB and AGB is fundamental in determining reliable SBF evaluations. The SBF measurements are used to give robust constraints on the evolution of AGB stars, suggesting that mass loss activity on AGB stars should be twice more efficient than on the RGB stars. Our models are able to reproduce the absolute SBF magnitudes of the Galactic Globular Clusters and of galaxies, and their integrated colors. New calibrations of absolute SBF magnitude in VV, RR, II, and KK photometric filters are provided, which appear reliable enough to directly gauge distances bypassing other distance indicators. The SBF technique is also used as stellar population tracer to derive age and metallicity of a selected sample of galaxies of known distances. Finally, {\it SBF color} versus {\it integrated color} diagrams are proposed as particularly useful in removing the well known {\it age-metallicity degeneracy} affecting our knowledge of remote stellar systems.Comment: AJ accepted, 46 pages, 21 figures, 10 tables, uses aastex.cl

    HST Observations of Chromospheres in Metal Deficient Field Giants

    Full text link
    HST high resolution spectra of metal-deficient field giants more than double the stars in previous studies, span about 3 magnitudes on the red giant branch, and sample an abundance range [Fe/H]= -1 to -3. These stars, in spite of their age and low metallicity, possess chromospheric fluxes of Mg II (2800 Angstrom) that are within a factor of 4 of Population I stars, and give signs of a dependence on the metal abundance at the lowest metallicities. The Mg II k-line widths depend on luminosity and correlate with metallicity. Line profile asymmetries reveal outflows that occur at lower luminosities (M_V = -0.8) than detected in Ca K and H-alpha lines in metal-poor giants, suggesting mass outflow occurs over a larger span of the red giant branch than previously thought, and confirming that the Mg II lines are good wind diagnostics. These results do not support a magnetically dominated chromosphere, but appear more consistent with some sort of hydrodynamic, or acoustic heating of the outer atmospheres.Comment: 36 pages, 12 figures, 7 tables, and accepted for publication in The Astronomical Journa

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n

    Inference for bounded parameters

    Full text link
    The estimation of signal frequency count in the presence of background noise has had much discussion in the recent physics literature, and Mandelkern [1] brings the central issues to the statistical community, leading in turn to extensive discussion by statisticians. The primary focus however in [1] and the accompanying discussion is on the construction of a confidence interval. We argue that the likelihood function and pp-value function provide a comprehensive presentation of the information available from the model and the data. This is illustrated for Gaussian and Poisson models with lower bounds for the mean parameter

    Mass Segregation in the Globular Cluster Palomar 5 and its Tidal Tails

    Full text link
    We present the stellar main sequence luminosity function (LF) of the disrupted, low-mass, low-concentration globular cluster Palomar 5 and its well-defined tidal tails, which emanate from the cluster as a result of its tidal interaction with the Milky Way. The results of our deep (B ~ 24.5) wide-field photometry unequivocally indicate that preferentially fainter stars were removed from the cluster so that the LF of the cluster's main body exhibits a significant degree of flattening compared to other globular clusters. There is clear evidence of mass segregation, which is reflected in a radial variation of the LFs. The LF of the tidal tails is distinctly enhanced with faint, low-mass stars. Pal 5 exhibits a binary main sequence, and we estimate a photometric binary frequency of roughly 10%. Also the binaries show evidence of mass segregation with more massive binary systems being more strongly concentrated toward the cluster center.Comment: 14 pages, 12 figures, accepted for publication in the Astronomical Journa

    The N Enrichment and Supernova Ejection of the Runaway Microquasar LS 5039

    Get PDF
    We present an investigation of new optical and ultraviolet spectra of the mass donor star in the massive X-ray binary LS 5039. The optical band spectral line strengths indicate that the atmosphere is N-rich and C-poor, and we classify the stellar spectrum as type ON6.5 V((f)). The N-strong and C-weak pattern is also found in the stellar wind P Cygni lines of N V 1240 and C IV 1550. We suggest that the N-enrichment may result from internal mixing if the O-star was born as a rapid rotator, or the O-star may have accreted N-rich gas prior to a common-envelope interaction with the progenitor of the supernova. We re-evaluated the orbital elements to find an orbital period of P=4.4267 +/- 0.0010 d. We compared the spectral line profiles with new non-LTE, line-blanketed model spectra, from which we derive an effective temperature T_eff = 37.5 +/- 1.7 kK, gravity log g = 4.0 +/- 0.1, and projected rotational velocity V sin i = 140 +/- 8 km/s. We fit the UV, optical, and IR flux distribution using a model spectrum and extinction law with parameters E(B-V)= 1.28 +/- 0.02 and R= 3.18 +/- 0.07. We confirm the co-variability of the observed X-ray flux and stellar wind mass loss rate derived from the H-alpha profile, which supports the wind accretion scenario for the X-ray production in LS 5039. Wind accretion models indicate that the compact companion has a mass M_X/M_sun = 1.4 +/- 0.4, consistent with its identification as a neutron star. The observed eccentricity and runaway velocity of the binary can only be reconciled if the neutron star received a modest kick velocity due to a slight asymmetry in the supernova explosion (during which >5 solar masses was ejected).Comment: 38 pages, 9 figures; 2004, ApJ, 600, Jan. 10 issue, in press Discussion revised thanks to comments from P. Podsiadlowsk

    Synthetic Spectra and Color-Temperature Relations of M Giants

    Full text link
    As part of a project to model the integrated spectra and colors of elliptical galaxies through evolutionary synthesis, we have refined our synthetic spectrum calculations of M giants. After critically assessing three effective temperature scales for M giants, we adopted the relation of Dyck et al. (1996) for our models. Using empirical spectra of field M giants as a guide, we then calculated MARCS stellar atmosphere models and SSG synthetic spectra of these cool stars, adjusting the band absorption oscillator strengths of the TiO bands to better reproduce the observational data. The resulting synthetic spectra are found to be in very good agreement with the K-band spectra of stars of the appropriate spectral type taken from Kleinmann & Hall (1986) as well. Spectral types estimated from the strengths of the TiO bands and the depth of the bandhead of CO near 2.3 microns quantitatively confirm that the synthetic spectra are good representations of those of field M giants. The broad-band colors of the models match the field relations of K and early-M giants very well; for late-M giants, differences between the field-star and synthetic colors are probably caused by the omission of spectral lines of VO and water in the spectrum synthesis calculations. Here, we present four grids of K-band bolometric corrections and colors -- Johnson U-V and B-V; Cousins V-R and V-I; Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO -- for models having 3000 K < Teff < 4000 K and -0.5 < log g < 1.5. These grids, which have [Fe/H] = +0.25, 0.0, -0.5 and -1.0, extend and supplement the color-temperature relations of hotter stars presented in a companion paper (astro-ph/9911367).Comment: To appear in the March 2000 issue of the Astronomical Journal. 60 pages including 15 embedded postscript figures (one page each) and 6 embedded postscript tables (10 pages total

    Squeezing a drop of nematic liquid crystal with strong elasticity effects

    Get PDF
    The One Drop Filling (ODF) method is widely used for the industrial manufacture of liquid crystal devices. Motivated by the need for a better fundamental understanding of the reorientation of the molecules due to the flow of the liquid crystal during this manufacturing method, we formulate and analyze a squeeze-film model for the ODF method. Specifically, we consider a nematic squeeze film in the asymptotic regime in which the drop is thin, inertial effects are weak, and elasticity effects are strong for four specific anchoring cases at the top plate and the substrate (namely, planar, homeotropic, hybrid aligned nematic, and π-cell infinite anchoring conditions) and for two different scenarios for the motion of the top plate (namely, prescribed speed and prescribed force). Analytical expressions for the leading- and first-order director angles, radial velocity, vertical velocity, and pressure are obtained. Shear and couple stresses at the top plate and the substrate are calculated and are interpreted in terms of the effect that flow may have on the alignment of the molecules at the plates, potentially leading to the formation of spurious optical defects (“mura”)
    corecore