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ABSTRACT
The One Drop Filling (ODF) method is widely used for the industrial manufacture of liquid crystal devices. Motivated by the need for a better
fundamental understanding of the reorientation of the molecules due to the flow of the liquid crystal during this manufacturing method, we
formulate and analyze a squeeze-film model for the ODF method. Specifically, we consider a nematic squeeze film in the asymptotic regime
in which the drop is thin, inertial effects are weak, and elasticity effects are strong for four specific anchoring cases at the top plate and the
substrate (namely, planar, homeotropic, hybrid aligned nematic, and π-cell infinite anchoring conditions) and for two different scenarios for
the motion of the top plate (namely, prescribed speed and prescribed force). Analytical expressions for the leading- and first-order director
angles, radial velocity, vertical velocity, and pressure are obtained. Shear and couple stresses at the top plate and the substrate are calculated
and are interpreted in terms of the effect that flow may have on the alignment of the molecules at the plates, potentially leading to the formation
of spurious optical defects (“mura”).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5110878., s

I. INTRODUCTION

The industrial manufacture of liquid crystal devices involves a
number of different processes, a key one of which involves filling
a liquid crystal between two solid parallel plates of glass or plastic.
There are two basic methods for doing this, namely, capillary fill-
ing and One Drop Filling (ODF). In the capillary filling method,
the two parallel plates are first fixed together so that there is a pre-
scribed gap between them. The liquid crystal is then introduced
into this gap by capillary forces, usually under a vacuum, until the
device is filled.1–3 For standard liquid crystal materials and device
gaps (typically less than 10 μm), the relatively long time scale of
capillary filling (typically 1–2 days2,4) means that using this method
can be a key factor limiting the rate of device production. In the
ODF method, an array of drops of the liquid crystal are placed on
one of the plates, here called the substrate, and the second plate,

here called the top plate, is lowered into position, squeezing the
drops until they coalesce to form a continuous film which fills the
device.3,5 The motion of the top plate is stopped when the required
gap between the plates is attained. The relatively short time scale of
the ODF method (originally typically 1–2 hours,2,4 but now much
shorter than this) means that devices can be produced at a much
faster rate using this method rather than the capillary filling method.
As well as moving from the capillary filling method to the ODF
method, manufacturers seek to further reduce manufacturing time
by increasing the speed of the top plate, which increases flow speeds,
but this is often done without a clear understanding of the possi-
ble consequences of flow-driven reorientation and subsequent mis-
alignment of the molecules at the plates. Indeed, spurious optical
effects, termed “mura” (a Japanese word meaning irregularity or
lack of uniformity), have been reported, which degrade liquid crys-
tal device performance.6–8 The misalignment of the molecules at the
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plates due to the flow of the liquid crystal is one possible mechanism
for the appearance of mura.8 We have recently proposed reducing
the occurrence of mura by using smaller drops and by moving the
top plate more slowly.8 The effect of these changes is to reduce the
flow speed during squeezing, which in turn reduces the degree of
molecular reorientation within the device; however, the time taken
to manufacture the device increases. In this work, we will consider
a mathematical model for the squeezing and spreading of a drop
of liquid crystal between two parallel plates which occurs during
the ODF method. Specifically, we will consider smaller drops and
slower plate speeds than those typical of the current ODF method in
order to provide insight into the possible mechanisms of molecular
misalignment in this possible future manufacturing regime. In par-
ticular, an understanding of the behavior of the liquid crystal in this
regime could potentially lead to improvements in manufacturing
efficiency.

In this work, we will consider nematic liquid crystalline mate-
rials, which are hereafter termed nematics, since it is these materials
that are used in the ODF method of liquid crystal device man-
ufacture. In nematics, there is long-range order of the molecular
orientation but no positional order of the molecules. There are
many approaches to modeling nematics, ranging from atomistic and
molecular models9–11 to continuum models.12,13 For the system we
consider, for which variations occur on the micron length scale and
the millisecond time scale, it is appropriate to use a continuum
model. The standard continuum model for nematics uses the aver-
age molecular direction as a dependent variable, which is mathemat-
ically described by a unit vector n and is known as the director.12,14

Describing the dynamics of a nematic involves modeling the cou-
pling of the director n and fluid velocity u, which is mathematically
captured by the Ericksen–Leslie equations15,16 subject to appropriate
boundary conditions. The Ericksen–Leslie equations represent state-
ments of the conservation of mass, linear momentum, and angular
momentum and have successfully been used to model many differ-
ent fundamental effects and industrially relevant processes in liquid
crystals.12

The flow of the nematic during the ODF method after the top
plate has made contact with the drops is similar to the classical
squeeze-film problem in Newtonian fluid dynamics.17 In this work,
we therefore consider a nematic squeeze-film problem in which
director orientation and flow are coupled, using the Ericksen–Leslie
equations in place of the Navier–Stokes equations used to describe
the Newtonian problem. Specifically, we consider a layer of nematic
confined between two parallel plates and squeezed by the motion of
the top plate.

In Sec. II, we formulate a squeeze-film model for the ODF
method in which we assume an idealized form of the shape of the
nematic drop, for four specific director anchoring cases at the sub-
strate and the top plate and for two different scenarios for the motion
of the top plate. After nondimensionalizing the governing equa-
tions and boundary conditions, we consider the asymptotic regime
in which elasticity effects are much stronger than the viscous ones
and solve the resulting system of equations and boundary conditions
in order to better understand the effects of director–flow coupling.
In particular, we obtain analytical expressions for the director, veloc-
ity, and pressure, as well as the force on the top plate (when the speed
of the top plate is prescribed) and the speed of the top plate (when
the force on the top plate is prescribed).

II. MODEL FORMULATION
In order to model the squeezing and spreading of a nematic

drop which occurs during the ODF method, we consider a geomet-
rically simplified problem. We assume that at some time t < 0 the
top plate and the drop make contact and that by time t = 0 any tran-
sient initial effects arising from starting the squeezing process can
be ignored. For t ≥ 0, we assume that the drop of nematic is cylin-
drical in shape, lies between the moving top plate at z = h(t) and
the fixed substrate at z = 0, and has radius R(t) and height equal to
the height of the top plate h(t), as shown in Fig. 1. The top plate
and substrate are assumed to have a fixed area, denoted by A, where
we assume that throughout squeezing A > πR(t)2. The constant vol-
ume of the drop of nematic V is given in terms of its radius and
height by

V = πR(t)2h(t). (1)

By conservation of mass, the outer boundary of the nematic, r = R(t),
moves outward radially as the top plate moves toward the substrate.
We consider two different ambient pressures: the internal ambient
pressure between the top plate and the substrate, denoted by pI, and
the external ambient pressure above the top plate, denoted by pE.
Typically, manufacturing processes are carried out in a vacuum to
avoid the formation of air bubbles,2 so in what follows we often set
pI = pE = 0.

To model the squeezing and spreading of the nematic drop, we
use the Ericksen–Leslie equations12,14–16 to describe the dynamics of
the director orientation, velocity, and pressure. At both the substrate
and top plate, we impose the standard no-slip and no-penetration
conditions for the velocity. In addition, we assume that the director
is at a fixed angle to the surface normal, termed an infinite anchor-
ing condition.12 Although the analysis presented below is valid for
any fixed angles of the director at the substrate and top plate, we
will focus on four specific cases of infinite anchoring that are com-
monly used in nematic devices, namely, planar, homeotropic, hybrid
aligned nematic (HAN), and π-cell anchoring.18 All of these anchor-
ing cases involve various combinations of the director being aligned
parallel or perpendicular to the boundaries. A boundary condition in

FIG. 1. A schematic diagram of a nematic squeeze-film problem consisting of a
cylindrical drop of radius R(t) of nematic (gray) between a moving top plate at
z = h(t) and a fixed substrate at z = 0. The motion of the top plate induces a flow of
the nematic as indicated. The internal ambient pressure pI, external ambient pres-
sure pE, the director angle ϕ, and the axisymmetric coordinates used to describe
the problem are also indicated.
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which the director is perpendicular to the boundary corresponds to a
situation in which a mechanical or chemical treatment of the bound-
ary (for example, the addition of a surfactant such as lecithin18)
forces the nematic molecules at the boundary to orient parallel to the
surface normal. On the other hand, a boundary condition in which
the director is parallel to the boundary corresponds to a situation in
which the boundary is coated with a polymer (for example, PVA or
polyimide18) which forces the nematic molecules at the boundary to
orient perpendicular to the surface normal (i.e., to lie in the plane of
the boundary). In the absence of flow, the orientation of the direc-
tor at the boundary is planar degenerate, but in the presence of flow,
the director will align with the direction of flow. In particular, for
the radial flow considered in this work, this will align the director
in the radial direction.

In addition to the four anchoring cases, two different scenar-
ios for the motion of the top plate will be studied. The first sce-
nario corresponds to the current ODF method in which the top
plate is moved downwards at a prescribed constant speed, and
is hereafter referred to as the “prescribed speed” scenario. The
second scenario corresponds to the situation in which the top
plate moves downwards under a prescribed force (for example, its
own weight) and is hereafter referred to as the “prescribed force”
scenario.

A. The Ericksen–Leslie equations
We assume that both the director field and the velocity remain

axisymmetric so that all dependent variables are independent of
the azimuthal angle, θ, shown in Fig. 1. The director is assumed
to lie in the r–z-plane and can therefore be described by an angle
ϕ between the director and the radial direction, also shown in
Fig. 1. We therefore write the director, pressure, and velocity in the
form

n = cos(ϕ(r, z, t))êr + sin(ϕ(r, z, t))êz , (2)

u = u(r, z, t)êr + w(r, z, t)êz , (3)

p = p(r, z, t), (4)

where u is the component of velocity in the radial direction êr and
w is the component of velocity in the vertical direction êz . The
Ericksen–Leslie equations for the director, velocity, and pressure in
the form of Eqs. (2)–(4), respectively, are

0 = 1
r
∂(ru)
∂r

+
∂w

∂z
, (5)

ρu̇ +
∂p
∂r
= ∂

∂r
( ∂D
∂ur
) +

∂

∂z
( ∂D
∂uz
) − ϕr

∂D
∂ϕ̇

, (6)

ρẇ +
∂p
∂z
= ∂

∂r
( ∂D
∂wr
) +

∂

∂z
( ∂D
∂wz
) − ϕz

∂D
∂ϕ̇

, (7)

0 = ∂

∂r
(∂ωF

∂ϕr
) +

∂

∂z
(∂ωF

∂ϕz
) − ∂ωF

∂ϕ
− ∂D

∂ϕ̇
, (8)

where the subscripts r and z in ϕr , ϕz , ur , uz , wr , and wz repre-
sent the partial derivatives with respect to that variable, a superposed

dot denotes the material time derivative, and ρ is the constant fluid
density. Two scalar quantities, the elastic free energy,ωF , and the dis-
sipation function, D, are also required, in order to close Eqs. (5)–(8).
The elastic free energy describes the elastic energy associated with
distortions to the director and the dissipation function describes the
rate of viscous dissipation due to gradients in the velocity. We will
use the Frank–Oseen free energy, ωF ,12 formulated using an assump-
tion of small deformations and taking into account the symmetry of
the nematic phase, given by

ωF =
1
2

K1(∇ ⋅ n)2 +
1
2

K2(n ⋅ ∇ × n)2 +
1
2

K3(n ×∇ × n)2

+
1
2
(K2 + K4)∇ ⋅ ((n ⋅ ∇)n − (∇ ⋅ n)), (9)

where the constants K1, K2, and K3 are the nematic splay, twist, and
bend elastic constants, and the combination K2 + K4 is termed the
saddle-splay elastic constant. To produce a mathematically tractable
system of equations, it is common to assume that the splay, twist,
and bend elastic constants are equal so that K = K1 = K2 = K3 and
that K4 = 0. While this “one-constant approximation” is certainly
a simplification of the material properties of a typical nematic, in
practice, the ratios of elastic constants are rarely greater than two
and the behavior is not expected to change qualitatively when this
approximation is used.19 Using the one-constant approximation, the
elastic free energy [Eq. (9)] becomes

ωF =
K
2
[(∂ϕ

∂z
)

2
+ (∂ϕ

∂r
)

2
+

cos2 ϕ
r2 ]. (10)

For the dissipation function D, we use the form proposed by Leslie16

given by

D = 1
2
[α1(nieijnj)2 + 2γ2Nieijnj + α4eijeij

+ (α5 + α6)nieijejknk + γ1NiNi], (11)

where eij are the components of the rate of strain tensor, defined by
e = (∇u + (∇u)T)/2, and the corotational time-flux N has compo-
nents N i = ṅi −W ijnj, where W ij are the components of the vorticity
tensor, defined by W = (∇u − (∇u)T)/2. The parameters γ1 = α3
− α2 and γ2 = α3 + α2 are the rotational and torsional viscosity coef-
ficients, respectively, where α1, . . ., α6 are the Leslie viscosities.12

Using Eqs. (2) and (3) leads to

D = 1
2
[α1(ur cos2 ϕ +

1
2
(uz + wr) sin 2ϕ + wz sin2 ϕ)

2

+ 2γ2(
1
2
(wz − ur) sin 2ϕ +

1
2
(uz + wr) cos 2ϕ)

×(ϕ̇ +
1
2
(uz −wr)) + α4(u2

r +
u2

r2 +
1
2
(uz + wr)2 + w2

z)

+ (α5 + α6)(u2
r cos2 ϕ +

1
4
(uz + wr)2 + w2

z sin2 ϕ)

+ γ1(ϕ̇ +
1
2
(uz −wr))

2
]. (12)
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B. Nondimensionalization
In order to determine the important parameter groups and to

enable progress in considering important asymptotic regimes, the
equations are now nondimensionalized according to

t = R
U

t̂, r = Rr̂, z = Hẑ,

V = R2HV̂ , R(t) = RR̂(t), h(t) = Hĥ(t), A = R2Â,

ϕ = ϕ̂, u = Uû, w = UH
R

ŵ, p = μUR
H2 p̂,

γ1 = μγ̂1, γ2 = μγ̂2, α1 = μα̂1, α2 = μα̂2,

α3 = μα̂3, α4 = μα̂4, α5 = μα̂5, α6 = μα̂6,

ωF =
K
H2 ω̂F , D = μU2

H2 D̂, F = μUR3

H2 F̂, Wp =
μUR3

H2 Ŵp,

(13)
where the caret (̂ ) denotes nondimensional variables, F is the force
on the top plate, which will be introduced in Sec. III C, and Wp is the
weight of the top plate, which will be introduced in Sec. V. Typical
values of the radial scale R, height scale H, and radial velocity scale
U are given in Sec. II E. The pressure and viscosity are nondimen-
sionalized using the isotropic viscosity, which is given by μ = α4/2 in
terms of the Leslie viscosity α4, or, equivalently, by μ = η3 in terms of
the Miesowicz viscosity η3.20

The nondimensional aspect ratio δ, defined by the ratio of the
height scale H and the radial scale R, is

δ = H
R

. (14)

In practice, the aspect ratio is typically small, corresponding to a thin
film of nematic, for which the radial length scale is much larger than
the height scale, and so a thin-film (i.e., small δ) approximation is
appropriate. The reduced Reynolds number, defined by

Re = ρUH2

μR
, (15)

is a measure of the ratio of inertial forces and viscous forces within
the system, and a large reduced Reynolds number corresponds to a
system dominated by inertial effects, while a small reduced Reynolds
number corresponds to a system dominated by viscous effects. The
Ericksen number, defined by

Er = μUH
K

, (16)

is a measure of the ratio of viscous effects and elasticity effects within
the system, and a large Ericksen number corresponds to a system in
which viscous effects are much stronger than elasticity effects, while
a small Ericksen number corresponds to a system in which elasticity
effects are much stronger than viscous effects.

From Eqs. (5)–(8), the nondimensional equations that govern
the director angle ϕ, the radial velocity component u, the vertical
velocity component w, and the pressure p are

0 = 1
r
∂(ru)
∂r

+
∂w

∂z
, (17)

Re ρu̇ + pr =
∂

∂r
[α1(δ2ur cos4 ϕ + (δuz + δ3wr) sinϕ cos3 ϕ + δ2wz sin2 ϕ cos2 ϕ) − γ2

2
(δ3urϕ̇ sin 2ϕ +

1
2
(δ2uz − δ4wr)ur sin 2ϕ) + 2δur

+ (α5 + α6)δur cos2 ϕ] +
∂

∂z
[α1(δur sinϕ cos3 ϕ + (uz + δ2wr) sin2 ϕ cos2 ϕ + δ2wz sin3 ϕ cosϕ)

+
γ2

2
(δϕ̇ cos 2ϕ +

1
2
(uz − δur) cos 2ϕ +

1
2
(δwz − δur) sin 2ϕ +

1
2
(uz + δ2wr) cos 2ϕ) + (uz + δ2wr) +

(α5 + α6)
4

(uz + δ2wr)

+
γ1

2
(δϕ̇ +

1
2
(uz − δ2wr))] −

γ2

2
((δ2wz − δ2ur)ϕr sin 2ϕ + (δuz + δ3wr)ϕr cos 2ϕ) + γ1(δ2ϕrϕ̇ +

1
2
(δuz − δ3wr)ϕr), (18)

δ2 Re ρẇ + pz =
∂

∂r
[α1(δ3ur sinϕ cos3 ϕ +

1
2
(δ2uz + δ4wr) sin2 ϕ cos2 ϕ + δ3wz sin3 ϕ cosϕ) − γ2

4
((δ3wz − δ3ur) sin 2ϕ

+ (δ2uz + δ4wr) cos 2ϕ) +
γ2

2
(δ3ϕ̇ cos 2ϕ +

1
2
(δ2uz − δ4wr) cos 2ϕ) +

α4

2
(δ2uz + δ4wr) +

(α5 + α6)
4

(δ2uz + δ4wr)

− γ1

2
(δ3ϕ̇ +

1
2
(δ2uz − δ4wr))] +

∂

∂z
[α1(δ2ur sin2 ϕ cos2 ϕ + (δuz + δ3wr) sin3 ϕ cosϕ + δ2wz sin4 ϕ)

+
γ2

2
(δ2ϕ̇ sin 2ϕ +

1
2
(δuz − δ3wr) sin 2ϕ) + α4δ2wz + (α5 + α6)δ2wz sin2 ϕ]

− γ2

2
((δ2wz − δ2ur)ϕz sin 2ϕ + (δuz + δ3wr)ϕz cos 2ϕ) + γ1(δ2ϕ̇ϕz +

1
2
(δuz − δ3wr)ϕz), (19)

and

0 = ϕzz −
1
2

Er uz(γ1 + γ2 cos 2ϕ) + δEr[−γ2
1
2
(wz − ur) sin 2ϕ − γ1ϕ̇] + δ2[ϕrr −

2 sin 2ϕ
r2 − 1

2
Erwr(γ1 + γ2 cos 2ϕ)], (20)
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where we have now dropped the caret (̂ ) notation for simplicity
since all quantities are now nondimensional. We will later solve
Eqs. (17)–(20) using certain assumptions made about the size of
the relative nondimensional parameters δ, Re, and Er and subject
to appropriate boundary conditions on ϕ, u, w, and p.

C. Rescaled radial and vertical coordinates
Before proceeding further, it is convenient to rescale the radial

and vertical coordinates according to

r̃ = r
R(t) =

√ π
V

h(t)1/2r and z̃ = z
h(t) , (21)

where r̃ is the rescaled radial coordinate and z̃ is the rescaled verti-
cal coordinate and where r̃ can be expressed in terms of the height
of the top plate h(t) using Eq. (1). In terms of the rescaled verti-
cal coordinate z̃, the top plate and substrate are fixed at z̃ = 1 and
z̃ = 0, respectively. The change in the height of the top plate h(t) is
included in the rescaled versions of the Ericksen–Leslie equations
(17)–(20) via the appropriate rescaling of derivatives of r and z,
namely, ∂/∂r → V−1/2π1/2h(t)1/2∂/∂ r̃ and ∂/∂z → h(t)−1∂/∂z̃,
respectively.

Henceforth, we will express all equations and boundary condi-
tions in terms of the rescaled coordinates r̃ and z̃ given by Eq. (21).
However, for clarity and to aid physical interpretation, we will plot
results in terms of the original unscaled radial coordinate r and
vertical coordinate z.

D. Boundary conditions
In order to solve Eqs. (17)–(20), appropriate boundary condi-

tions must be imposed on the variables ϕ, u, w, and p. For the veloc-
ity components, u and w, we impose no-slip and no-penetration
conditions on the solid boundaries at z̃ = 0 and z̃ = 1. The sub-
strate at z̃ = 0 is stationary, and the top plate at z̃ = 1 is moving
with vertical velocity h′(t) = dh/dt, and so the appropriate bound-
ary conditions are u(r̃, 0, t) = 0, u(r̃, 1, t) = 0, w(r̃, 0, t) = 0, and
w(r̃, 1, t) = h′(t). The pressure, p, is assumed to be fixed at the con-
stant internal ambient pressure, pI, at the outer edge of the nematic
drop so that p(1, z̃, t) = pI. We impose regularity and axisymmetry
at the center of the drop by assuming that ∂p/∂ r̃ = 0 at r̃ = 0. In
summary, the boundary conditions for velocity and pressure are

u = 0 on z̃ = 0, (22)
w = 0 on z̃ = 0, (23)
u = 0 on z̃ = 1, (24)

w = h′(t) on z̃ = 1, (25)

∂p
∂ r̃
= 0 on r̃ = 0, (26)

p = pI on r̃ = 1. (27)

As mentioned previously, we consider four specific anchor-
ing cases that commonly occur in nematic devices, namely, planar,
homeotropic, hybrid aligned nematic (HAN), and π-cell anchoring.
In the planar anchoring case, the director is parallel to the boundary
at both the substrate and top plate so that ϕ(r̃, 0, t) = ϕ(r̃, 1, t) = 0,
and in the homeotropic anchoring case, the director is perpendic-
ular to the boundary at both the substrate and top plate so that
ϕ(r̃, 0, t) = ϕ(r̃, 1, t) = π/2. In the HAN anchoring case, the direc-
tor is parallel to the substrate and perpendicular to the top plate so
that ϕ(r̃, 0, t) = 0 and ϕ(r̃, 1, t) = π/2, and in the π-cell anchoring
case, the director is parallel to the substrate so that ϕ(r̃, 0, t) = 0 and
parallel to the top plate so that ϕ(r̃, 1, t) = π. The equilibrium direc-
tor configurations in the limit of no flow for these anchoring cases,
namely, Eqs. (53)–(56), will be calculated later and are sketched in
Fig. 2.

It is worth noting at this point that the axisymmetric form of
the nondimensional elastic energy given by Eq. (10) is

ωF =
1
2
[ 1

h(t)2 (
∂ϕ
∂z̃
)

2
+ δ2 π

V
h(t)((∂ϕ

∂ r̃
)

2
+

cos2 ϕ
r̃2 )], (28)

and therefore, the elastic energy is undefined if ϕ ≠ π/2 at r̃ = 0, a sit-
uation that occurs for the planar, HAN, and π-cell anchoring cases.
This type of singularity in the elastic energy is associated with a dis-
continuity in the director orientation and can lead to point or line
defects. At such defects, a disordering transition occurs and a direc-
tor description of the nematic is not valid.12,14 However, in Secs. II E
and II F, we will find that since the aspect ratio is small (i.e., δ≪ 1),
the singular r̃−2 term in Eq. (28) does not appear at leading order
in δ. The results in this work are therefore valid away from the cen-
ter of the drop at r̃ = 0. In summary, the boundary conditions for the
four anchoring cases are

planar: ϕ = 0 on z̃ = 0, ϕ = 0 on z̃ = 1, (29)
homeotropic: ϕ = π/2 on z̃ = 0, ϕ = π/2 on z̃ = 1, (30)

HAN: ϕ = 0 on z̃ = 0, ϕ = π/2 on z̃ = 1, (31)
π-cell: ϕ = 0 on z̃ = 0, ϕ = π on z̃ = 1. (32)

E. Typical values of nondimensional groups
In this subsection, we consider the asymptotic regimes for the

sizes of the nondimensional groups δ, Re, and Er corresponding to

FIG. 2. Sketches of the equilibrium direc-
tor configurations in the limit of no flow
for the four specific anchoring cases con-
sidered: (a) planar, (b) homeotropic, (c)
HAN, and (d) π-cell anchoring.
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TABLE I. Typical values of the nondimensional groups in current manufacturing
processes using the ODF method, calculated using the following typical parameter
values: height of the drop H = 50 μm, radius of the drop R = 5 mm, typical top
plate speed wp = 1 mm s−1, isotropic viscosity μ = 0.01 Pa s, one-constant elastic
constant K = 10 pN, and density ρ = 1000 kg m−3.8,19

Nondimensional group Definition Typical value

δ H/R 10−2

Re ρUH2/μR = ρwpH2/μ 5 × 10−3

Er μUH/K = μwpR/K 5 × 103

typical length scales and plate speeds that occur in both the current
and possible future manufacturing regimes using the ODF method.

In current manufacturing processes using the ODF method,
typical parameter values are height of the drop H = 50 μm, radius of
the film R = 5 mm, vertical velocity (i.e., a typical top plate speed)
wp = 1 mm s−1, isotropic viscosity μ = 0.01 Pa s, one-constant elastic
constant K = 10 pN, and density ρ = 1000 kg m−3.8,19 The radial
velocity scale, U, appearing in the reduced Reynolds number and
Ericksen number is calculated using the conservation of mass equa-
tion (17) to give U = wpR/H. As Table I shows, the assumptions of
small aspect ratio (δ ≪ 1) and small reduced Reynolds number (Re
≪ 1) are well justified for these parameter values. The Ericksen num-
ber is typically much larger than unity during current manufacturing
processes, indicating that viscous effects are typically stronger than
elasticity effects and that a large Ericksen number approximation, Er
≫ 1, is appropriate.

However, as described earlier, in this work, we consider the
possibility of using smaller drops of nematic and slower top plate
speeds in order to access a different possible future manufacturing
regime. Specifically, we consider typical values for ink-jet printed
drops,21,22 where the length scales are reduced by a factor of 100, giv-
ing a height of the drop H = 0.5 μm, a radius of the drop R = 50 μm,
and a reduced top plate speed of wp = 2 μm s−1. All of the mate-
rial parameters (namely, the viscosity, elastic constant, and density
of the nematic) remain the same as before. As Table II shows, using
these values, the assumptions of small aspect ratio (δ≪ 1) and small
reduced Reynolds number (Re ≪ 1) remain well justified, but now
the value of the Ericksen number is smaller, indicating that a small
Ericksen number approximation, Er≪ 1, is now appropriate. In this
work, we will therefore consider the asymptotic regime in which
δ ≪ 1, Re ≪ 1, and Er ≪ 1, which corresponds to a thin film of

TABLE II. Typical values of the nondimensional groups in possible future manufactur-
ing processes using the ODF method, calculated using the following typical parameter
values: height of the drop H = 0.5 μm, radius of the drop R = 50 μm, a reduced top
plate speed wp = 2 μm s−1, isotropic viscosity μ = 0.01 Pa s, one-constant elastic
constant K = 10 pN, and density ρ = 1000 kg m−3.19

Nondimensional group Definition Typical value

δ H/R 10−2

Re ρUH2/μR = ρwpH2/μ 10−7

Er μUH/K = μwpR/K 10−1

nematic in which inertial effects are weak and elasticity effects are
strong compared to viscous effects. Similar regimes for the flow of
nematic have been considered for a number of classical problems in
fluid dynamics including flow down an inclined plane and channel
flows (see, for example, Refs. 23–27).

F. The thin-film approximation
With the assumptions that the aspect ratio and the Reynolds

number are both small, δ≪ 1 and Re≪ 1, at leading order in δ the
radial momentum equation (18), rescaled using Eq. (21), becomes

∂p
∂ r̃
=
√

V
π

h(t)−5/2 ∂

∂z̃
[(α1

4
sin2 2ϕ +

γ2

2
cos 2ϕ + 1

+
α5 + α6

4
+
γ1

4
)∂u
∂z̃
]. (33)

With the Parodi relation, α6 = α2 + α3 + α5,12 we can rewrite Eq. (33)
in terms of the nondimensional Miesowicz viscosities,12 defined by

η12 = α1, η1 =
1
2
(α2 + 2α3 + 2 + α5), η2 =

1
2
(−α2 + 2 + α5)

(34)
as

∂p
∂ r̃
=
√

V
π

h(t)−5/2 ∂

∂z̃
[(η12 sin2 ϕ cos2 ϕ + η1 cos2 ϕ

+η2 sin2 ϕ)∂u
∂z̃
]. (35)

Similarly the vertical momentum equation, (19), rescaled using
Eq. (21), becomes

∂p
∂z̃
= 0. (36)

Therefore, at leading order in δ the pressure is independent of the
rescaled vertical coordinate z̃ and hence is given by

p = p(r̃, t). (37)

In addition, the angular momentum equation (20), again rescaled
using Eq. (21), becomes

0 = 1
h(t)

∂2ϕ
∂z̃2 −

1
2

Er(γ1 + γ2 cos 2ϕ) ∂u
∂z̃

. (38)

In summary, in what follows we will solve Eqs. (17), (35), and (38)
subject to the boundary conditions [Eqs. (22)–(27)] together with
the appropriate conditions from Eqs. (29)–(32) for the particular
problem under consideration for the dependent variables ϕ(r̃, z̃, t),
u(r̃, z̃, t), w(r̃, z̃, t), and p(r̃, t).

III. THE LIMIT OF SMALL ERICKSEN NUMBER
In the limit of small Ericksen number Er ≪ 1, we seek an

asymptotic solution to the problem in the form

ϕ = ϕ0 + Er ϕ1 + Er2ϕ2 + O(Er3), (39)

u = u0 + Er u1 + Er2u2 + O(Er3), (40)

w = w0 + Er w1 + Er2w2 + O(Er3), (41)

p = p0 + Er p1 + Er2p2 + O(Er3). (42)
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Substituting these asymptotic expansions into the governing equa-
tions (17), (35), and (38), we are able to obtain the leading-order
solutions that describe the dominant behavior at small Ericksen
number. By finding the higher-order corrections to these solutions,
we are then able to describe the perturbations to this leading-order
behavior. Using the expansions for the velocity components given
by Eqs. (40) and (41) and the rescaling equation (21), the conserva-
tion of mass equation (17) takes the same form at each order in the
Ericksen number, namely,

√ π
V

h(t)3/2 1
r̃
∂(r̃ui)
∂ r̃

+
∂wi

∂z̃
= 0 (43)

for i = 0, 1, 2, . . .. Using the expansions (39)–(42) and the rescaling
equation (21) in Eqs. (35) and (38), and considering the appropri-
ate expressions at different orders in the Ericksen number, yields, at
leading order,

√ π
V

h(t)5/2 ∂p0

∂ r̃
= ∂

∂z̃
[g(ϕ0)

∂u0

∂z̃
], (44)

∂2ϕ0

∂z̃2 = 0; (45)

at first order,
√ π

V
h(t)5/2 ∂p1

∂ r̃
= ∂

∂z̃
[g′(ϕ0)ϕ1

∂u0

∂z̃
+ g(ϕ0)

∂u1

∂z̃
], (46)

1
h(t)

∂2ϕ1

∂z̃2 = m(ϕ0)
∂u0

∂z̃
; (47)

and at second order,
√ π

V
h(t)5/2 ∂p2

∂ r̃
= ∂

∂z̃
[g′(ϕ0)ϕ2

∂u0

∂z̃
+

1
2

g′′(ϕ0)ϕ2
1
∂u0

∂z̃

+ g′(ϕ0)ϕ1
∂u1

∂z̃
+ g(ϕ0)

∂u2

∂z̃
], (48)

1
h(t)

∂2ϕ2

∂z̃2 = m′(ϕ0)ϕ1
∂u0

∂z̃
+ m(ϕ0)

∂u1

∂z̃
, (49)

where

g(ϕ) = η12 sin2 ϕ cos2 ϕ + η1 cos2 ϕ + η2 sin2 ϕ, (50)
m(ϕ) = γ1 + γ2 cos 2ϕ. (51)

Equations (45) and (47) show that while the flow of the nematic
does not affect the leading-order director angle ϕ0, the leading-order
radial flow u0 may affect the first-order director angle ϕ1. Indeed,
Eq. (47) has similarities to that describing the classical flow align-
ment problem in a nematic12 and, as we will see later, has similar
behavior. Specifically, when the leading-order shear rate ∂u0/∂z̃ is
large, the director will be forced to align, at least away from bound-
aries, at angles given by m(ϕ0) = 0. For a positive shear rate, the
relevant solution to m(ϕ0) = 0 is

ϕ0 = ϕL =
1
2

cos−1(−γ1

γ2
), (52)

where ϕL is the Leslie angle,12 while for negative shear rates, the
director angle will tend toward ϕ0 = −ϕL. Since the director is invari-
ant to rotations of π, there are an infinite number of “positive”

Leslie angles, kπ + ϕL, and “negative” Leslie angles, kπ − ϕL, for any
integer k. We note that the terms “positive” and “negative” Leslie
angles refer to the sign of the shear rate that is flow aligning the
director rather than to the sign of the numerical value of the angle.
Considering various different Leslie angles will be important in
Sec. IV D for understanding the behavior of the first-order director
angle ϕ1 in each of the four anchoring cases.

A. General solution
The leading-order angular momentum equation (45) can be

immediately solved to yield the leading-order director angle ϕ0
= ϕ0(z̃) for each of the four anchoring cases given by Eqs. (29)–(32),
namely,

ϕ0 = 0 for the planar anchoring case, (53)

ϕ0 =
π
2

for the homeotropic anchoring case, (54)

ϕ0 =
πz̃
2

for the HAN anchoring case, (55)

ϕ0 = πz̃ for the π-cell anchoring case. (56)

These solutions are the equilibrium director configurations in the
limit of no flow for the four anchoring cases previously sketched in
Fig. 2. Note that these solutions for ϕ0 given in Eqs. (55) and (56) are
dependent on time via the rescaled vertical coordinate z̃. Integrating
Eq. (44) twice with respect to z̃ and using the boundary conditions
[Eqs. (22) and (24)] then yields the solution for the leading-order
radial velocity,

u0(r̃, z̃, t) =
√ π

V
h(t)5/2 ∫

z̃

0

1
g(ϕ0)

(∂p0(r̃, t)
∂ r̃

z̃ + C)dξ, (57)

where the function C = C(r̃, t) is found from the boundary condi-
tions to be

C = −∂p0(r̃, t)
∂ r̃ ∫

1

0

z̃
g(ϕ0)

dz̃(∫
1

0

dz̃
g(ϕ0)

)
−1

. (58)

From Eqs. (22), (57), and (58), we can then express the leading-order
radial velocity as

u0(r̃, z̃, t) =
√ π

V
h(t)5/2 ∂p0(r̃, t)

∂r
Π1(z̃), (59)

where

Π1(z̃) = ∫
z̃

0

ξ
g(ϕ0)

dξ − ∫
z̃

0

1
g(ϕ0)

dξ∫
1

0

z̃
g(ϕ0)

dz̃

×(∫
1

0

1
g(ϕ0)

dz̃)
−1

. (60)

The first-order correction to the leading-order director angle, ϕ1, is
calculated by integrating the first-order angular momentum equa-
tion (47), twice with respect to z̃, and using the solution for u0 given
by Eq. (59) and the boundary conditions ϕ1 = 0 on both z̃ = 0 and
z̃ = 1, to give

ϕ1(r̃, z̃, t) =
√ π

V
h(t)7/2 ∂p0(r̃, t)

∂ r̃
Π2(z̃), (61)
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where

Π2(z̃) = ∫
z̃

0
∫

ξ

0
m(ϕ0)

dΠ1

dζ
dζ dξ − z̃∫

1

0
∫

ζ

0
m(ϕ0)

dΠ1

dξ
dξ dζ.

(62)
We can now calculate the first-order correction to the leading-order
radial velocity, u1, by integrating Eq. (46) with respect to z, using
expressions for u0 and ϕ1 from Eqs. (59) and (61) as well as the first-
order boundary conditions u1 = 0 on both z̃ = 0 and z̃ = 1, to obtain

u1(r̃, z̃, t) =
√ π

V
h(t)5/2 ∂p1(r̃, t)

∂ r̃
Π1(z̃)

+
π
V

h(t)6(∂p0(r̃, t)
∂ r̃

)
2

Π3(z̃), (63)

where

Π3(z̃) = ∫
z̃

0

1
g(ϕ0)

dξ(∫
1

0

1
g(ϕ0)

dζ)
−1

∫
1

0

g′(ϕ0)Π2
dΠ1
dζ

g(ϕ0)
dζ

− ∫
z̃

0

g′(ϕ0)Π2
dΠ1
dξ

g(ϕ0)
dξ. (64)

To calculate the leading- and first-order vertical velocity compo-
nents, w0 and w1, the solutions for u0 and u1, given by Eqs. (59)
and (63), and the conservation of mass equation (43), with i = 0, 1,
are used, yielding

w0(r̃, z̃, t) = − π
V

h(t)4 1
r̃
∂

∂ r̃
(r̃

∂p0(r̃, t)
∂ r̃

)∫
z̃

0
Π1(ξ)dξ, (65)

w1(r̃, z̃, t) = − π
V

h(t)4 1
r̃
∂

∂ r̃
(r̃

∂p1(r̃, t)
∂ r̃

)∫
z̃

0
Π1(ξ)dξ − ( π

V
)

3/2

×h(t)15/2 1
r̃
∂

∂ r̃
⎛
⎝

r̃(∂p0(r̃, t)
∂ r̃

)
2⎞
⎠∫

z̃

0
Π3(ξ)dξ. (66)

To calculate the leading-order pressure, p0, we apply the boundary
condition [Eq. (25)] to the leading-order vertical velocity, given by
Eq. (65), and integrate with respect to r̃ and impose the condition on
the pressure gradient [Eq. (26)] which leads to

∂p0(r̃, t)
∂ r̃

= −Vh′(t)r̃
2πh(t)4 (∫

1

0
Π1(ξ)dξ)

−1
. (67)

The leading-order pressure gradient [Eq. (67)] can be substituted
into Eqs. (59), (61), (63), (65), and (66) to yield the full solutions for
ϕ1, u0, u1, w0, and w1, respectively. A further integration of Eq. (67)
with respect to r̃ and application of the boundary condition on the
pressure [Eq. (27)] yields the solution for the leading-order pressure,

p0(r̃, t) = pI +
Vh′(t)
4πh(t)4 (1 − r̃2)(∫

1

0
Π1(ξ)dξ)

−1
. (68)

The same approach is used to calculate the first-order pressure
gradient and the first-order pressure,

∂p1(r̃, t)
∂r

= − V3/2h′(t)2

4π3/2h(t)9/2
r̃2(∫

1

0
Π1(ξ)dξ)

−3

∫
1

0
Π3(ξ)dξ, (69)

p1(r̃, t) = V3/2h′(t)2

12π3/2h(t)9/2
(1 − r̃3)(∫

1

0
Π1(ξ)dξ)

−3

∫
1

0
Π3(ξ)dξ.

(70)

In summary, in addition to the solutions for the leading-order direc-
tor angle ϕ0 for each anchoring case, given by Eqs. (53)–(56), we
find the leading-order radial velocity u0, given by Eq. (59), the first-
order director angle ϕ1, given by Eq. (61), first-order radial velocity
u1, given by Eq. (63), leading-order vertical velocity w0, given by
Eq. (65), first-order vertical velocity w1, given by Eq. (66), leading-
order pressure p0, given by Eq. (68), and first-order pressure p1,
given by Eq. (70). Equations (59), (61), (63), (65), (66), (68), and
(70) describe the director angle, velocity, and pressure at leading
and first order for any fixed angles of the director at the substrate
and the top plate; however, in this work, we will focus on the four
anchoring cases given by Eqs. (29)–(32). In fact, Eqs. (59), (61), (63),
(65), (66), (68), and (70) provide the solution at first-order for any
leading-order director angle ϕ0, including the more general situa-
tion where one or more of the plates exhibit weak anchoring28 rather
than infinite anchoring. A weak anchoring condition is a Robin con-
dition for the director angle, for instance, as in the Rapini–Papoular
form K∂ϕ/∂z ±A sin 2ϕ = 0,28 where A is known as the anchoring
strength.

The leading-order pressure, given by Eq. (68), can be expressed
as

p0 = pI − η(ϕ0)
3 Vh′(t)
πh(t)4 (1 − r̃2), (71)

where

η(ϕ0) = −(12∫
1

0
Π1(ξ)dξ)

−1
(72)

is an effective viscosity which depends on the leading-order director
angle via the expression for Π1 given by Eq. (60). For future refer-
ence, the values of the effective viscosity η(ϕ0) for the four anchoring
cases given by Eqs. (29)–(32), are listed in Table III using parameter
values for the standard nematic 4-Cyano-4'-pentylbiphenyl (5CB).12

Table III shows that η(ϕ0) is largest for the homeotropic anchoring
case for which η(ϕ0) = η2 and smallest for the planar anchoring case
for which η(ϕ0) = η1.

Note that substituting Eq. (71) into Eqs. (59), (61), and (65)
yields

ϕ1(r̃, z̃, t) = 6

√
V
π
η(ϕ0)h′(t)

h(t)1/2
Π2(z̃) r̃, (73)

u0(r̃, z̃, t) = 6

√
V
π
η(ϕ0)h′(t)

h(t)3/2
Π1(z̃) r̃, (74)

w0(z̃, t) = 12η(ϕ0)h′(t)∫
z̃

0
Π1(ξ)dξ, (75)

TABLE III. Values of the effective viscosity η(ϕ0) given by Eq. (72) for the four anchor-
ing cases given by Eqs. (29)–(32) using the material parameter values for the nematic
5CB.12

Anchoring case Effective viscosity η(ϕ0)

Planar η1 = 0.6258
Homeotropic η2 = 3.2270
HAN 1.6006
π-cell 0.9184
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and if we substitute η(ϕ0) = 1 and g(ϕ0) = 1 into Eqs. (71), (74), and
(75), we recover the classical solution to the Newtonian squeeze-film
problem.17

Equations (73)–(75) show that the first-order director angle
and the leading-order radial velocity are proportional to r̃, while the
leading-order vertical velocity is independent of r̃. Thus, the mag-
nitudes, but not the qualitative behavior, of ϕ1 and u0 vary with r̃.
Equations (68) and (73)–(75) also give the time dependence of the
solutions ϕ1, u0, w0, and p0, namely,

ϕ1 ∝
h′(t)

h(t)1/2
, u0 ∝

h′(t)
h(t)3/2

, w0 ∝ h′(t), and p0 ∝
h′(t)
h(t)4 .

(76)
While Eqs. (59), (61), (63), (65), (66), (68), and (70) provide

explicit expressions for the leading- and first-order solutions in the
limit of small Ericksen number, these expressions depend on the cal-
culation of the integrals Π1, Π2, and Π3. These integrals cannot be
analytically evaluated for general forms of the leading-order director
angle ϕ0. However, in two of the four anchoring cases, we consider,
namely, the planar [Eq. (29)] and homeotropic [Eq. (30)] anchor-
ing cases, g(ϕ0) is constant and hence further analytic progress
is possible. For the other two anchoring cases, namely, the HAN
[Eq. (31)] and π-cell [Eq. (32)] anchoring cases, g(ϕ0) is not constant,
and so the integrals and solutions must, in general, be evaluated
numerically.

For the two cases in which ϕ0 is constant, and so η(ϕ0), g(ϕ0),
and m(ϕ0) are constant and η(ϕ0) = g(ϕ0), analytical expressions for
the integrals Π1, Π2, and Π3 can be readily obtained and used to
calculate the leading- and first-order solutions, namely,

ϕ1 =
1
2

√
V
π

m(ϕ0)h′(t)
h(t)1/2

z̃(1 − 2z̃)(1 − z̃)r̃, (77)

u0 = −3

√
V
π

h′(t)
h(t)3/2

z̃(1 − z̃)r̃, (78)

u1 = 0, (79)

w0 = h′(t)z̃2(3 − 2z̃), (80)

w1 = 0, (81)

p0 = pI −
3g(ϕ0)Vh′(t)

πh(t)4 (1 − r̃2), (82)

p1 = 0. (83)

In particular, in the planar case ϕ0 = 0, η(ϕ0) = g(ϕ0) = η1 and m(ϕ0)
= γ1 + γ2, while in the homeotropic case ϕ0 = π/2, η(ϕ0) = g(ϕ0)
= η2 and m(ϕ0) = γ1 − γ2. In both cases, the first-order radial and
vertical velocities, as well as the first-order pressure, are all identi-
cally zero since Π3 = 0. Analytical expressions for the higher-order
terms in these cases can also be readily obtained but are omitted here
for brevity.

B. Shear stress and couple stress on the top plate
and the substrate

As mentioned in Sec. I, liquid crystal device performance can
be affected by the misalignment of the molecules at the plates.6–8

The source of this misalignment is a current topic of research, but
there is some evidence that this is an effect of the flow of the liquid
crystal during the ODF method.8 Flow of a nematic may affect the
alignment layer at one or both of the plates through, for example, a
frictional force derived from the shear stress at the plates or a direc-
tor torque derived from the couple stress at the plates. These stresses
can be calculated from the director angle and velocity.

The leading-order shear stress, g(ϕ0)∂u0/∂z̃, can be obtained
from Eqs. (53)–(56) and (59), yielding

g(ϕ0)
∂u0

∂z̃
∣
z̃=1
= 6

√
V
π
η(ϕ0)h′(t)

h(t)3/2
r̃

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −
∫

1

0

ξ
g(ϕ0)

dξ

∫
1

0

1
g(ϕ0)

dξ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (84)

g(ϕ0)
∂u0

∂z̃
∣
z̃=0
= −6

√
V
π
η(ϕ0)h′(t)

h(t)3/2
r̃
∫

1

0

ξ
g(ϕ0)

dξ

∫
1

0

1
g(ϕ0)

dξ
, (85)

at the top plate and the substrate, respectively.
The torque on the director depends on the couple stress. From

Eqs. (53)–(56), the leading-order couple stress, ∂ϕ0/∂z̃, is constant
and is equal to zero for the planar and homeotropic anchoring cases,
π/2 for the HAN anchoring case, and π for the π-cell anchoring
case. The first-order couple stress, Er∂ϕ1/∂z̃, can be obtained from
Eqs. (53)–(56) and (61), yielding

∂ϕ1

∂z̃
∣
z̃=1
= 6

√
V
π
η(ϕ0)h′(t)

h(t)1/2
r̃[∫

1

0
m(ϕ0)

dΠ1(ξ)
dξ

dξ

− ∫
1

0
∫

ξ

0
m(ϕ0)

dΠ1(ζ)
dζ

dζ dξ], (86)

∂ϕ1

∂z̃
∣
z̃=0
= −6

√
V
π
η(ϕ0)h′(t)

h(t)1/2
r̃∫

1

0
∫

ξ

0
m(ϕ0)

dΠ1(ζ)
dζ

dζ dξ,

(87)

at the top plate and the substrate, respectively. The leading-order
shear stress and the leading- and first-order couple stresses, for the
four anchoring cases, will be described below.

C. Forces on the top plate and the substrate
In an experimental or industrial setting, two measurable quan-

tities are the forces on the top plate and on the substrate. Indeed,
measuring the force on the top plate is one method used industri-
ally to monitor the distance between plates and hence to determine
when the squeezing of the nematic should be stopped. The forces on
the top plate and on the substrate can be calculated by integrating the
stress tensor over the appropriate boundary. The dimensional forces
on the top plate and substrate are defined by

[F]z=h(t) = −∫S
[êz ⋅ t ⋅ êz]

z=h(t)
dS

and

[F]z=0 = −∫S
[êz ⋅ t ⋅ êz]

z=0
dS, (88)
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respectively, where the stress tensor t is expressed in component
form as

tij = −pδij −
∂ωF

∂[∇n]kj
[∇n]kj + α1nkekpnpninj + α2Ninj

+α3niNj + α4eij + α5njeiknk + α6niejknk. (89)

In the present asymptotic limit of small Ericksen number, the
leading-order term in the stress tensor is simply that due to the pres-
sure, and the nondimensional leading-order force F0 evaluated on
the top plate and on the substrate is then

[F0]z=h(t) = ∫S
p0 dS and [F0]z=0 = ∫S

p0 dS, (90)

respectively. Using the rescaling equation (21) and substituting the
leading-order pressure [Eq. (68)] into Eq. (90) and integrating over
the entire top plate or substrate with respect to θ and r̃ yield

[F0]z̃=1 = −[F0]z̃=0 = ApI −
3η(ϕ0)V2h′(t)

2πh(t)5 . (91)

The leading-order force on the top plate [F0]z̃=1 is equal and oppo-
site to the leading-order force on the substrate [F0]z̃=0. Since the
effective viscosity η(ϕ0) appearing in Eq. (91) does not depend on
time, the forces on the top plate and on the substrate increase like
h(t)−5. As η(ϕ0) is largest for the homeotropic anchoring case (see
Table III), we find that this anchoring case is associated with the
largest forces on the top plate and on the substrate, while the pla-
nar anchoring case is associated with the smallest forces on the top
plate and on the substrate. In general, Eq. (91) shows that as the film
is squeezed and the height of the top plate h(t) reduces, an increas-
ing force is required to move the top plate, and the difference in
force required to move the top plate for each anchoring case depends
on the value of the effective viscosity η(ϕ0) for each anchoring
case.

The director, velocity, and pressure, as well as the shear stresses,
the couple stresses, and the forces on the top plate and on the sub-
strate, described above all depend on the manner in which the height
of the top plate h(t) varies in time. As described previously, there
are two important scenarios for the time-dependence of h(t): the
prescribed speed scenario and the prescribed force scenario. The
ODF method, in which the motion of the top plate is controlled
by a machine which squeezes the film of nematic until there is a
prescribed gap between the plates, corresponds to the first scenario.
Typically, ODF processes use a constant plate speed, and so this spe-
cial case is considered in Sec. IV (although the analysis can be readily
generalized to other cases). The widely studied problem in which the
top plate moves downwards under a constant force due to its own
weight is a particular case of the second scenario, and so this spe-
cial case is considered in Sec. V (although, again, the analysis can be
readily generalized to other cases).

IV. RESULTS FOR A PRESCRIBED SPEED
In the scenario of the top plate moving with a prescribed con-

stant speed, we set the dimensional height of the top plate to be
h(t) = H − wpt. The initial dimensional height of the top plate,
H, and the constant dimensional top plate speed, wp downwards,

can then be used to set the values used in the nondimensionaliza-
tion given by Eq. (13) in Sec. II B using U = wp

√
V/(πH3). The

nondimensionalized height of the top plate is then simply

h(t) = 1 − t. (92)

For the numerical solutions described in this section, we will set
pI = 0 and use the material parameter values for the nematic 5CB12

unless stated otherwise.

A. Leading-order radial velocity
The leading-order radial velocity u0, given by Eq. (59), is plot-

ted in Fig. 3 as a function of the original unscaled vertical coor-
dinate z for the four anchoring cases at r = R(t)/2 and t = 0.5.
As Fig. 3 shows, the radial velocity is identical in the planar (solid
line) and homeotropic (dotted line) anchoring cases, with both of
these anchoring cases having a symmetric Poiseuille flow. As Fig. 3
also shows, the leading-order radial velocity for the HAN anchoring
case (dashed line) has a Poiseuille-like profile, with the flow skewed
toward the lower viscosity region in the lower part of the squeeze
film. For the π-cell anchoring case (dashed-dotted line), Fig. 3 shows
similar behavior, with lower velocity in the higher viscosity region in
the center of the squeeze film and a higher velocity in the lower vis-
cosity regions near the substrate and the top plate. The location of
the maximum radial velocity, denoted by z = z∗, can be found using
Eq. (74) and the rescaling equation (21) to be

z∗ = h(t)
∫

1

0

ξ
g(ϕ0)

dξ

∫
1

0

1
g(ϕ0)

dξ
. (93)

Clearly, from Eq. (93), the location of the maximum velocity is a con-
stant fraction h(t) and so varies with time t like h(t). In the planar,
homeotropic, and π-cell (but not the HAN) anchoring cases, it is
straight forward to show that z∗ = h(t)/2 (i.e., the maximum velocity
is always in the center of the squeeze film).

FIG. 3. Leading-order radial velocity u0, given by Eq. (59), plotted as a function of
the vertical coordinate z for the four anchoring cases: planar (solid), homeotropic
(dotted), HAN (dashed), and π-cell (dashed-dotted) at r = R(t)/2 and t = 0.5 using
pI = 0 and the material parameter values for the nematic 5CB.12 The results for
the planar and homeotropic anchoring cases are identical, indicated by the solid
and dotted curves being plotted intermittently.
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For the HAN and π-cell anchoring cases, the higher velocity in
the lower viscosity regions leads to changes in the shear stress at the
substrate and at the top plate, as indicated by the gradient ∂u0/∂z at
z = 0 and z = h(t) in Fig. 3, when compared to the Poiseuille flow in
the planar and homeotropic anchoring cases.

The evolution of the leading-order radial velocity u0, given by
Eq. (59), is plotted in Fig. 4 as a function of z at r = R(t)/2 for
t = 0, t = 0.2, t = 0.4, and t = 0.6 for each of the four anchoring cases.
For each of the four anchoring cases, the radial velocity retains the
same functional form shown in Fig. 3 but increases in magnitude
as time increases. As Eq. (76) shows, this increase in magnitude is
proportional to h′(t)/h(t)3/2.

B. Leading-order vertical velocity
The leading-order vertical velocity w0, given by Eq. (65), is

plotted in Fig. 5 as a function of z for the four anchoring cases at
r = R(t)/2 and t = 0.5. The behavior of the leading-order vertical
flow can be understood by considering the leading-order radial
velocity shown in Fig. 3. By conservation of mass, a reduction in
the radial velocity must be matched by an increase in the vertical

velocity. The leading-order radial velocity is identical for the pla-
nar and homeotropic anchoring cases; this leads to the leading-order
vertical velocity also being identical, as shown in Eq. (80). As Fig. 5
shows, for the HAN anchoring case, the leading-order vertical veloc-
ity is larger in magnitude at all values of z than any of the other
three anchoring cases. This is due to the leading-order radial velocity
being skewed toward the lower part of the squeeze film, leading to a
larger vertical flux into this lower viscosity region and thus a larger
downward vertical velocity. In the π-cell anchoring case, there is a
smaller vertical velocity in the upper half [h(t)/2 < z < h(t)] of the
squeeze film and a larger velocity in the lower half [0 < z < h(t)/2]
than in the planar and homeotropic anchoring cases. As shown in
Fig. 3, there is larger radial velocity near the top plate in the π-cell
anchoring case than in the planar and homeotropic anchoring cases
resulting in smaller vertical flow in the π-cell anchoring case than
in the planar and homeotropic anchoring cases. The vertical veloc-
ity near the substrate is larger in the π-cell anchoring case than in
the planar and homeotropic anchoring cases, as the radial velocity
in the middle of the squeeze film is smaller, as shown in Fig. 3, in
the π-cell anchoring case than that of the planar and homeotropic
anchoring cases. Plots of the evolution of the leading-order vertical

FIG. 4. The evolution of the leading-order radial velocity u0, given by Eq. (59), plotted as a function of vertical coordinate z for the four anchoring cases: (a) planar (solid), (b)
homeotropic (dotted), (c) HAN (dashed), and (d) π-cell (dashed-dotted) at r = R(t)/2 for t = 0, t = 0.2, t = 0.4, and t = 0.6 using pI = 0 and the material parameter values for
the nematic 5CB.12
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FIG. 5. Leading-order vertical velocity w0, given by Eq. (65), plotted as a function
of vertical coordinate z for the four anchoring cases: planar (solid), homeotropic
(dotted), HAN (dashed), and π-cell (dashed-dotted) at r = R(t)/2 and t = 0.5 using
pI = 0 and the material parameter values for the nematic 5CB.12 The results for
the planar and homeotropic anchoring cases are identical, indicated by the solid
and dotted curves being plotted intermittently.

velocity w0, given by Eq. (65), are omitted since, as Eqs. (76) and (92)
show, the leading-order vertical velocity does not depend on time in
the prescribed speed scenario.

C. Leading-order pressure
The leading-order pressure p0, given by Eq. (68), is plotted in

Fig. 6 as a function of r for the four anchoring cases at t = 0.5. The
results given in Table III show that the homeotropic anchoring case
has the largest effective viscosity and hence the highest pressure,
whilet the planar anchoring case has the smallest effective viscos-
ity and hence the lowest pressure, in agreement with Fig. 6. The
pressures in the HAN and the π-cell anchoring cases lie between
those in the planar and homeotropic anchoring cases, with the pres-
sure in the HAN case being larger due to it having a larger effective
viscosity.

FIG. 6. Leading-order pressure p0, given by Eq. (68), plotted as a function of radial
coordinate r for the four anchoring cases: planar (solid), homeotropic (dotted),
HAN (dashed), and π-cell (dashed-dotted) at t = 0.5 using pI = 0 and the material
parameter values for the nematic 5CB.12

D. First-order director angle
As we have seen, since the Ericksen number is small, the direc-

tor angle is dominated by elastic effects and flow has no effect on
the leading-order director angle. However, at higher orders, the flow
has an effect on the director angle. The first-order director angle ϕ1,
given by Eq. (61), is plotted in Fig. 7 as a function of z for the four
anchoring cases at r = R(t)/2 and t = 0.5. As Fig. 7 shows, the planar
and homeotropic anchoring cases exhibit a flow-aligning correction
to the leading-order director angle in response to the leading-order
radial velocity shown in Fig. 3. For the planar anchoring case (solid
line), as a consequence of the leading-order Poiseuille flow profile,
the leading-order solution ϕ0 = 0 is increased toward the positive
Leslie angle ϕL in the lower half [0 < z < h(t)/2] of the squeeze film
and decreased toward the negative Leslie angle −ϕL in the upper half
[h(t)/2 < z < h(t)] of the squeeze film. The homeotropic anchoring
case (dotted line) has a similar behavior, the leading-order solution
ϕ0 = π/2 is decreased toward the positive Leslie angle ϕL in the lower
half of the squeeze film and increased towards the closest negative
Leslie angle π − ϕL in the upper half of the squeeze film. (Recall
that the terms “positive” and “negative” Leslie angles refer to the
sign of the shear rate that is flow aligning the director rather than
to the sign of the numerical value of the angle.) The perturbation
in the homeotropic anchoring case is larger than that in the planar
anchoring case since the closest Leslie angle for the nematic 5CB is
ϕL ≈ 0.208, which is closer to 0 than to π/2, so that the torque applied
to the director, and hence the perturbation to the director angle, due
to the flow is larger in the homeotropic anchoring case.

The behavior in the HAN anchoring case (dashed line) is more
complicated. Close to the top plate, where the leading-order director
is similar to the leading-order director for the homeotropic anchor-
ing case, the behavior of the first-order director angle is similar to
that in the homeotropic case (denoted by the dotted line in Fig. 7),
such that, in this region, the flow acts to align the director toward the
nearest negative Leslie angle π − ϕL ≈ 2.933, resulting in a positive
perturbation ϕ1. Indeed, because the shear rate is negative over the
majority of the squeeze film (see Fig. 3), the torque in the majority
of the cell will be positive, tending to increase the first-order director
angle. However, close to the substrate at z = 0, the torque applied

FIG. 7. First-order director angle ϕ1, given by Eq. (61), plotted as a function of
vertical coordinate z for the four anchoring cases: planar (solid), homeotropic (dot-
ted), HAN (dashed), and π-cell (dashed-dotted) at r = R(t)/2 and t = 0.5 using
pI = 0 and the material parameter values for the nematic 5CB.12

Phys. Fluids 31, 083107 (2019); doi: 10.1063/1.5110878 31, 083107-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

to the director will attempt to align the director toward the posi-
tive Leslie angle ϕL ≈ 0.208. Therefore, for leading-order director
angles less than ϕL, this will lead to a positive first-order perturba-
tion ϕ1, whereas for leading-order director angles greater than ϕL,
this should lead to a negative first-order perturbation ϕ1. However,
the strength of the elasticity and the large positive torque in the rest
of the squeeze film means that the net result is a positive perturbation
ϕ1 throughout the squeeze film.

For the π-cell anchoring case, in the upper half of the squeeze
film the leading-order director angle is greater than π/2 and in
the lower half of the squeeze film the leading-order director angle
is less than π/2. Therefore, in the upper half of the squeeze film,
the torque applied to the director will lead to a positive perturba-
tion ϕ1 toward the nearest negative Leslie angle π − ϕL, and in the
lower half of the squeeze film the torque applied to the director will
lead to a negative perturbation ϕ1 toward the nearest positive Leslie
angle ϕL.

The evolution of the first-order director angle ϕ1, given by
Eq. (61), is plotted in Fig. 8 as a function of z for the four anchor-
ing cases at r = R(t)/2 for t = 0, t = 0.2, t = 0.4, and t = 0.6. As the
squeezing occurs, the shear rate increases, leading to an increase in

the torque on the director, and thus, the magnitude of the first-order
director angle |ϕ1| increases as the shear gradient aligns the director
closer toward the closest Leslie angle. As Eq. (76) shows, this increase
in magnitude of ϕ1 is proportional to h′(t)/h(t)1/2.

In order to visualize the perturbations of the leading-order
director due to flow, Fig. 9 shows the leading-order director field
n(ϕ0) and the director field up to first-order n(ϕ0 + Erϕ1). Note that
in order to clearly show the first-order perturbation to the leading-
order director field, we have exaggerated the first-order perturbation
by artificially increasing the Ericksen number to Er = 100 in Fig. 9(b),
Er = 10 in Figs. 9(d) and 9(f), and Er = 35 in Fig. 9(h).

E. Shear stress and couple stress on the top plate
and the substrate

The leading-order shear stress g(ϕ0)∂u0/∂z̃ at the top plate
z̃ = 1 and the substrate z̃ = 0, given by Eqs. (84) and (85), and the
leading- and first-order couple stress ∂ϕ0/∂z̃ + Er∂ϕ1/∂z̃ at z̃ = 1
and z̃ = 0, given by Eqs. (86) and (87), are shown in Table IV for
the four anchoring cases, at r = R(t)/2 and t = 0.5, and using mate-
rial parameter values for the nematic 5CB.12 Table IV shows that

FIG. 8. The evolution of the first-order director angle ϕ1, given by Eq. (61), plotted as a function of vertical coordinate z for the four anchoring cases: (a) planar (solid), (b)
homeotropic (dotted), (c) HAN (dashed), and (d) π-cell (dashed-dotted) at r = R(t)/2 for t = 0, t = 0.2, t = 0.4, and t = 0.6 using pI = 0 and the material parameter values for
the nematic 5CB.12 The arrow shows the direction of increasing time, t.
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FIG. 9. The leading-order director field n(ϕ0) [(a), (c), (e), and (g)] and the director field up to first-order n(ϕ0 + Erϕ1) [(b), (d), (f), and (h)] for the four anchoring cases: [(a)
and (b)] planar, [(c) and (d)] homeotropic, [(e) and (f)] HAN, and [(g) and (h)] π-cell at t = 0.09, where Er = 100 in (b), Er = 10 in (d) and (f), and Er = 35 in (h) using pI = 0 and
the material parameter values for the nematic 5CB.12 Note that in order to clearly show the first-order perturbation to the leading-order director field, we have exaggerated
the first-order perturbation by artificially increasing the Ericksen number.

TABLE IV. Leading-order shear stress g(ϕ0)∂u0/∂z̃ at the top plate z̃ = 1 and the substrate z̃ = 0, given by Eqs. (84) and
(85), and the leading- and first-order couple stress ∂ϕ0/∂z̃ + Er∂ϕ1/∂z̃ at z̃ = 1 and z̃ = 0, given by Eqs. (86) and (87),
evaluated for the four anchoring cases: planar, homeotropic, HAN, and π-cell, at r = R(t)/2 and t = 0.5, using the material
parameter values for the nematic 5CB.12

Shear stress g(ϕ0)∂u0/∂z̃ Couple stress ∂ϕ0/∂z̃ + Er∂ϕ1/∂z̃

Anchoring case z̃ = 1 z̃ = 0 z̃ = 1 z̃ = 0

Planar −1.1952 1.1952 0.0173 Er 0.0173 Er
Homeotropic −6.1637 6.1637 −0.3967 Er −0.3967 Er
HAN −4.0358 2.0786 π/2 − 0.3855 Er π/2 + 0.1076 Er
π-cell −1.7543 1.7543 π − 0.0315 Er π − 0.0315 Er
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FIG. 10. Leading-order force on the top plate [F0]z=h(t), given by Eq. (91), plotted
as a function of time t for the four anchoring cases: planar (solid), homeotropic
(dotted), HAN (dashed) and π-cell (dashed-dotted) using pI = 0 and the material
parameter values for the nematic 5CB.12

the leading-order shear stress is largest for the homeotropic anchor-
ing case, which is due to the large value of g(ϕ0) at both z̃ = 1
and z̃ = 0 in this case. The HAN anchoring case is the only case
with an asymmetric solution for u0, as shown in Fig. 3, which gives
rise to a corresponding asymmetry in the shear stress at z̃ = 1 and
z̃ = 0. For the planar, homeotropic, and π-cell anchoring cases, the
solution for ϕ1 is antisymmetric about z̃ = 0.5, as shown in Fig. 7,
which leads to equal first-order couple stresses at z̃ = 1 and z̃ = 0
in these cases. For the HAN anchoring case, the solution for ϕ1 is
asymmetric, leading to different values of the couple stress at z̃ = 1
and z̃ = 0. As Eqs. (84)–(87) show, the magnitude of the leading-
order shear stress and the first-order couple stress increase as
h′(t)/h(t)3/2 r̃ and h′(t)/h(t)1/2 r̃, respectively.

F. Leading-order force on the top plate
and the substrate

The leading-order force on the top plate [F0]z=h(t), given by
Eq. (91), is plotted in Fig. 10 as a function of time for the four anchor-
ing cases. This is the force required to squeeze the nematic film at a
constant prescribed speed. The leading-order force on the substrate
is equal and opposite to the leading-order force on the top plate, i.e.,
[F0]z=0 = −[F0]z=h(t). As Fig. 10 shows, an increasing magnitude
of force must be applied to the top plate to close the squeeze film
at a constant prescribed speed. Indeed, as is immediately evident
from Eq. (91), the force needed to maintain a constant prescribed
speed increases as h(t)−5 = (1 − t)−5 for all anchoring cases and
so approaches infinity as t approaches the time t = 1 at which the
top plate meets the substrate. It is also evident from Fig. 10 that the
anchoring case that produces the largest pressure requires the largest
force to close the squeeze film, so that the homeotropic anchoring
case requires the largest force to close the squeeze film to a given
height of the top plate, and therefore requires the most work during
manufacturing.

V. RESULTS FOR A PRESCRIBED FORCE
The second scenario studied is that in which the top plate

is free to move under a prescribed constant force due to its own

dimensional weight. Although this is not the situation in the ODF
method, it is the more commonly studied situation for a Newto-
nian fluid and is of scientific interest in its own right. The initial
dimensional height of the top plate, H, and the constant dimensional
weight of the top plate, Wp, can then be used to set the values used
in the nondimensionalization given by Eq. (13) in Sec. II B using
U = WpH2/μR3. The nondimensionalized initial height of the top
plate is then h = 1 at t = 0. Unlike the previous scenario, for t > 0, the
height of the top plate h(t) is now unknown and must be determined
by considering the balance of forces on the top plate. In the limit of
small Ericksen number, we seek a solution for the height of the top
plate h(t) as an asymptotic expansion in the form

h(t) = h0(t) + O(Er). (94)

The force on the top plate, given by Eq. (91), can then be used to
calculate the unknown leading-order height of the top plate h0(t)
by equating the sum of the weight of the top plate and the force from
a fixed constant external ambient pressure, pE, with the leading-
order force, namely, [F0]z=h(t) =Wp + ApE. Substituting the asymp-
totic expansion for the height of the top plate Eq. (94) into Eq. (91)
at leading order in Er, we obtain

Wp + ApE = ApI −
3η(ϕ0)V2

2πh5
0

dh0

dt
. (95)

Rearranging, setting W̃p =Wp −A(pI − pE), and integrating Eq. (95)
with respect to t, we obtain the solution from leading-order height
of the top plate,

h0 =
1

(1 + ζt)1/4
, where ζ = 8πW̃p

3η(ϕ0)V2 (96)

and η(ϕ0) is the effective viscosity defined in Eq. (72). As mentioned
previously, typically the ODF method is carried out in a vacuum
where pI = pE = 0 so that W̃p = Wp and hence the leading-order
height of the top plate decreases in time; however, we note that for
A(pI − pE) >Wp, the leading-order height of the top plate increases
in time, and for A(pI − pE) = Wp, the leading-order height of the top
plate remains fixed at h0 = 1. We note that upon substituting η(ϕ0)
= 1, the classical solution for height of the top plate for a Newtonian
fluid is recovered.17

In this work, we have only considered four infinite anchoring
cases. However, note that the expression (96) is more general than
this and, in fact, represents the leading-order height of the top plate
h0(t) for any ϕ0 that is the solution of Eq. (45) and any anchoring
condition (for example, a weak anchoring condition28). The leading-
order height of the top plate h0, given by Eq. (96), is plotted in Fig. 11
as a function of time t for the four anchoring cases using pI = pE.
Figure 11 shows that h0 reduces fastest for the planar anchoring case.
This result is as might have been expected, since the planar anchor-
ing case has the smallest effective viscosity η(ϕ0), and so requires the
smallest force to close it at the same rate as the other anchoring cases.
The results for each of the anchoring cases differ due to the val-
ues of the effective viscosity shown in Table III. As is evident from
Eq. (96), the smaller the effective viscosity, the faster the h0 decreases.

Using the leading-order height of the top plate h0, given
by Eq. (96), the solutions for the first-order director angle ϕ1,
the leading-order radial velocity u0, the leading-order vertical
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FIG. 11. The leading-order height of the top plate h0 in the prescribed force sce-
nario, given by Eq. (96), plotted as a function of time t for the four anchoring
cases: planar (solid), homeotropic (dotted), HAN (dashed), and π-cell (dashed-
dotted) using pI = pE, W p = 1, and V = 1 and the material parameter values for the
nematic 5CB.12

velocity w0, and the leading-order pressure p0 in the prescribed force
scenario are

ϕ1(r̃, z̃, t) = −3
2
ζη(ϕ0)

√
V
π

Π2(z̃) r̃

(1 + ζt)9/8
, (97)

u0(r̃, z̃, t) = −3
2
ζη(ϕ0)

√
V
π

Π1(z̃) r̃

(1 + ζt)7/8
, (98)

w0(z̃, t) = 3ζη(ϕ0)
√

V
π
∫ z̃

0 Π1(ξ)dξ

(1 + ζt)5/4
, (99)

p0(r̃, t) = pI +
3Vζη(ϕ0)

4π
(1 − r̃2)
(1 + ζt)1/4

. (100)

As Eqs. (97)–(100) show, the first-order director angle ϕ1, the
leading-order radial velocity u0, the leading-order vertical velocity
w0, and the leading-order pressure difference p0 − pI, all tend toward
zero in the limit t →∞.

The leading-order shear stress and the leading- and first-order
couple stresses at the top plate and the substrate for the four anchor-
ing cases can be calculated using Eqs. (97) and (98). However, since
their behavior is qualitatively the same as that in the prescribed speed
scenario, the details are omitted for brevity.

VI. SUMMARY AND CONCLUSIONS
Motivated by the need for a better fundamental understanding

of the reorientation of the molecules due to the flow of the liquid
crystal during the industrial manufacture of liquid crystal devices,
in this work we formulated and analyzed a squeeze-film model for
the ODF method. Specifically, we considered a nematic squeeze film
in the asymptotic regime in which the drop is thin, inertial effects
are weak, and elasticity effects are strong (i.e., in which the aspect
ratio δ ≪ 1, the reduced Reynolds number Re ≪ 1, and the Erick-
sen number Er≪ 1 are all small) for four specific anchoring cases at
the top plate and the substrate (namely, planar, homeotropic, HAN,

and π-cell infinite anchoring conditions) and for two different sce-
narios for the motion of the top plate (namely, prescribed speed and
prescribed force). Analytical expressions for the leading- and first-
order director angles, ϕ0 and ϕ1, radial velocity, u0 and u1, vertical
velocity, w0 and w1, and pressure, p0 and p1, were obtained and
interpreted in terms of the effective viscosity η(ϕ0) given by Eq. (72),
and the relevant Leslie angles, ϕL, −ϕL and π − ϕL, where ϕL is given
by Eq. (52).

The results obtained in this work help us to improve our under-
standing of the ODF method. Specifically, as mentioned in Sec. I, the
misalignment of the molecules at the plates due to the flow of
the liquid crystal has been proposed as a possible mechanism for
the formation of mura. The present results capture the flow-driven
reorientation of the molecules during squeezing via the first-order
director angle ϕ1. In particular, we found that the magnitude of ϕ1
increases like h′(t)/h(t)1/2 and that the behavior of ϕ1 depends on
the anchoring case. Specifically, the magnitude of ϕ1 is largest for the
homeotropic and HAN anchoring cases, suggesting that these cases
are potentially more susceptible to the formation of mura. As also
mentioned in Sec. I, damage to the molecular alignment at the plates
has also been proposed as a possible mechanism for the formation
of mura. If this is the case, the molecular alignment at the plates
might be related to the shear stress and/or the couple stress. The
leading-order couple stress is zero for the planar and homeotropic
anchoring cases, π/2 for the HAN anchoring case, and π for the
π-cell anchoring case. The leading-order shear stress and the first-
order couple stress on the top plate and the substrate are given by
Eqs. (84)–(87). In particular, we found that the magnitudes of the
leading-order shear stress and the first-order couple stress increase
as h′(t)/h(t)3/2 r̃ and h′(t)/h(t)1/2 r̃, respectively, suggesting that
the formation of mura will more likely occur when the top plate
speed, h′(t), is large; the height of the top plate, h(t), is small; and
at a large radius, r̃.

The force required to squeeze the nematic film at a constant
prescribed speed is proportional to the effective viscosity, and so
in the scenario in which the top plate moves with a constant pre-
scribed speed, the homeotropic anchoring case requires the largest
force and the planar condition the smallest force. Correspondingly,
in the scenario in which the top plate moves downwards under its
own weight, the height of the top plate reduces fastest for the pla-
nar anchoring case and slowest for the homeotropic anchoring case.
Note that although we only considered four specific anchoring cases
of infinite anchoring in this work, the solutions for ϕ0, ϕ1, u0, u1, w0,
p0, and p1 also hold for other anchoring conditions, including weak
anchoring.

Finally, it should be pointed out that while in this work we have
focused on the possible future manufacturing regime in which elas-
ticity effects are stronger than the viscous ones (i.e., in which the
Ericksen number Er≪ 1 is small), in Sec. II E we showed that in the
current manufacturing regime elasticity effects are typically weaker
than the viscous ones (i.e., the Ericksen number Er≫ 1 is typically
large), and so this asymptotic regime is also of considerable practical
interest.
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