2,023 research outputs found

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    Electrochemic properties of single-wall carbon nanotube electrodes

    Get PDF
    The electrochemical properties of single-wall carbon nanotube ~CNT! electrodes in the form of sheets or papers have been examined. Thermal annealing has produced significant changes in a range of properties of the material including increased hydrophobicity and elimination of electroactive surface functional groups and other impurities. As a result of these changes, the treated electrodes exhibit lower double-layer capacitance, absence of faradaic responses and associated pseudocapacitance, and a better frequency response. The basic electrochemical behavior of the CNT paper electrodes is not markedly affected by relatively large differences in electrolyte ion size, consistent with an average pore size of 9 nm. Increases in both CNT sheet thickness and surface area induce a slower electrode response in agreement with the porous nature of the electrode matrix

    Chlorido(η4-1,5-cyclo­octa­diene)[(penta­fluoro­eth­yl)diphenyl­phosphane]iridium(I)

    Get PDF
    The title structure,[IrCl(C8H12)(C14H10F5P)], reveals that (C2F5)PPh2 (penta­fluoro­ethyl­diphenyl­phosphane or pfepp) disrupts the iridium dimer [(cod)IrCl]2 (cod = cyclo­octa-1,5-diene) by rupturing the bridging chloride ligands and binding in the open coordination site to form (cod)Ir(pfepp)Cl with the IrI atom in a distorted square-planar coordination environment. The structure deviates very little from the IrI–triphenyl­phosphine analog, although a significantly (∼20σ) shorter Ir—P bond is noted for the title compound

    Mechanical Metamaterials with Negative Compressibility Transitions

    Full text link
    When tensioned, ordinary materials expand along the direction of the applied force. Here, we explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which a material undergoes contraction when tensioned (or expansion when pressured). Continuous contraction of a material in the same direction of an applied tension, and in response to this tension, is inherently unstable. The conceptually similar effect we demonstrate can be achieved, however, through destabilisations of (meta)stable equilibria of the constituents. These destabilisations give rise to a stress-induced solid-solid phase transition associated with a twisted hysteresis curve for the stress-strain relationship. The strain-driven counterpart of negative compressibility transitions is a force amplification phenomenon, where an increase in deformation induces a discontinuous increase in response force. We suggest that the proposed materials could be useful for the design of actuators, force amplifiers, micro-mechanical controls, and protective devices.Comment: Supplementary information available at http://www.nature.com/nmat/journal/v11/n7/abs/nmat3331.htm

    Every Picture Tells a Story: The 2010 Round of Congressional Redistricting in New England

    Get PDF
    The United States Constitution requires that the number of representatives in Congress be reapportioned among the states based on a decennial census, and the U.S. Supreme Court ruled half a century ago that congressional districts within each state must be, as nearly as practicable, equal in population. However, the actual drawing of district lines for our national lower house and the methods employed for doing so are largely left to the individual states. Redistricting thus presents a fertile field for the comparative examination of state politics and political institutions

    A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene

    Full text link
    Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281

    Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Get PDF
    On 2017 August 17, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after merger. Over the first hour of observations the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measure the photosphere cooling from 11,000−900+340011,000^{+3400}_{-900} K to 9300−300+3009300^{+300}_{-300} K, and determine a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a begin displaying broad features after 1.46 days, and evolve qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high velocity, lanthanide-free material.Comment: 33 pages, 5 figures, 2 tables, Accepted to Scienc

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Diffusion and Transport Coefficients in Synthetic Opals

    Full text link
    Opals are structures composed of the closed packing of spheres in the size range of nano-to-micro meter. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the termal and electrical conductivity makes possible to estimate the transport coefficients of opal structures. We estimate this changes as function of the neck size and the mean-free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures.Comment: Submitted to PR
    • …
    corecore