211 research outputs found

    Ozone measurements from the NOAA-9 and the Nimbus-7 satellites: Implications of short and long term variabilities

    Get PDF
    An overview is given of the measurements of total ozne and ozone profiles by the SBUV/2 instrument on the NOAA-9 spacecraft relative to similar measurements from the SBUV and TOMS instruments on Nimbus-7. It is shown that during the three year period from March 14, 1985, to February 28, 1988, when these data sets overlap, there have been significant changes in the calibrations of the three instruments which may be attributed to the drift of the NOSS-9 orbit to later equator crossing times (for SBUV/2). These changes in instrument characteristics have affected the absolute values of the trends derived from the three instruments, but their geophysical characteristics and response to short term variations are accurate and correlate well among the three instruments. For example, the total column ozone measured by the three instruments shows excellent agreement with respect to its day to day, seasonal, and latitudinal variabilities. At high latitudes, the day to day fluctuations in total ozone show a strong positive correlation with temperature in the lower stratosphere, as one might expect from the dynamical coupling of the two parameters at these latitudes

    Status of the Dobson total ozone data set

    Get PDF
    During deliberations of the International Ozone Trends Panel (IOTP) it became obvious that satellite determinations of global ozone amounts by themselves could not provide the necessary confidence in the measured trends. During the time of the deliberations of the IOTP, Bojkov re-examined the records of serveral North American Dobson stations and Degorska re-examined the records of the Belsk station. They were able to improve the quality of the data sets, thus improving the precision of their total ozone data sets. These improvements showed the greater potential of the world-wide Dobson total ozone data set in two primary areas. Firstly, the improvements showed that the existing data set when evaluated will become more valuable for comparisons with satellite determinations of total ozone. Secondly, the Dobson data set covers a greater period of time than the satellite data sets thus offering the possibility of extending improved information on ozone trends further back in time. An International Dobson Workshop was convened in September, 1991, under the auspices of the NOAA Climate and Global Change Program. It was part of the Information Management element of the C&GC Program. Further, it was considered as a 'data archaeology' project under the above. Clearly if the existing Dobson data set can be improved by re-evaluating all data records, we will be able to uncover the 'true' or 'best' data and fulfill the role of archaeologists

    Climate Suite Study for the National Polar-Orbiting Operational Environmental Satellite System Internal Concepts Study

    Get PDF
    Our recommendations to NPOESS for the sensors it should adopt to meet threshold requirements for global monitoring of ozone and, to some extent, of aerosols and of atmospheric temperature, pressure, and water vapor content are summarized in this report. The degree to which these sensors fulfill other NPOESS requirements than ozone is also summarized. The number of sensors that should be in the constellation is discussed in terms of desired reliability, continuity of coverage, and the ability to cross-calibrate successive sensors. Our recommendations for specific ozone measurement requirements, IORD item 4.1.6.2.28, are given. We make the case that the monitoring of three minor constituents in the upper atmosphere (N20, ClO or ClONO2, and HNO3) should be added to the list of NPOESS requirements because of their importance to long-term ozone studies and the small additional cost required (ozone sensors are already designed to measure them). Specific measurement requirements, which should be regarded as supplementary to the ozone requirement, are given here. The necessity of using two types of sensors, nadir-viewers and limb-scanners, for atmospheric studies is discussed

    Ozone determinations with the NOAA SBUV/2 system

    Get PDF
    The NOAA satellite ozone monitoring program was initiated by the National Environmental Satellite Data and Information Service (NESDIS) in December 1984, with the launch of the NOAA-9 spacecraft carrying the first operational Solar Backscatter Ultraviolet Spectrometer (SBUV/2). This instrument and its successor on NOAA-11, launched in 1988, are similar to the SBUV instrument launched by the NASA in 1978 on the Nimbus-7 research spacecraft. Measurements by the SBUV and SBUV/2 instruments overlap beginning in 1985. These instruments use measurements of the reflected ultraviolet solar radiation from the atmosphere to derive total ozone amounts and ozone vertical profiles. Since launch, the NOAA instruments and the derived products have been undergoing extensive evaluation by scientists of NOAA and NASA. Measurements obtained with these instruments are processed in real time by the NESDIS. These are reprocessed as the SBUV/2 instrument characterization is refined and as the retrieval algorithm for processing the data is improved. The NOAA-9 ozone data archive begins in March 1985 and continues through October 1990. The archive of NOAA-11 data begins in January 1989 and the data continues to be acquired in 1992

    Automated simultaneous analysis phylogenetics (ASAP) : an enabling tool for phlyogenomics

    Get PDF
    © 2008 Sarkar et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Bioinformatics 9 (2008): 103, doi:10.1186/1471-2105-9-103.The availability of sequences from whole genomes to reconstruct the tree of life has the potential to enable the development of phylogenomic hypotheses in ways that have not been before possible. A significant bottleneck in the analysis of genomic-scale views of the tree of life is the time required for manual curation of genomic data into multi-gene phylogenetic matrices. To keep pace with the exponentially growing volume of molecular data in the genomic era, we have developed an automated technique, ASAP (Automated Simultaneous Analysis Phylogenetics), to assemble these multigene/multi species matrices and to evaluate the significance of individual genes within the context of a given phylogenetic hypothesis. Applications of ASAP may enable scientists to re-evaluate species relationships and to develop new phylogenomic hypotheses based on genome-scale data.This work is funded in part by NSF DBI-0421604 to GC and RD. INS is supported in part by the Ellison Medical Foundation

    Limits on Stellar and Planetary Companions in Microlensing Event OGLE-1998-BUL-14

    Get PDF
    We present the PLANET photometric data set for \ob14, a high magnification (Amax16A_{\rm max}\sim 16) event alerted by the OGLE collaboration toward the Galactic bulge in 1998. The PLANET data set consists a total of 461 I-band and 139 VV-band points, the majority of which was taken over a three month period. The median sampling interval during this period is about 1 hour, and the 1σ1\sigma scatter over the peak of the event is 1.5%. The excellent data quality and high maximum magnification of this event make it a prime candidate to search for the short duration, low amplitude perturbations that are signatures of a planetary companion orbiting the primary lens. The observed light curve for \ob14 is consistent with a single lens (no companion) within photometric uncertainties. We calculate the detection efficiency of the light curve to lensing companions as a function of the mass ratio and angular separation of the two components. We find that companions of mass ratio 0.01\ge 0.01 are ruled out at the 95% confidence level for projected separations between 0.4-2.4 \re, where \re is the Einstein ring radius of the primary lens. Assuming that the primary is a G-dwarf with \re\sim3 {\rm AU} our detection efficiency for this event is 60\sim 60% for a companion with the mass and separation of Jupiter and 5\sim5% for a companion with the mass and separation of Saturn. Our efficiencies for planets like those around Upsilon And and 14 Her are > 75%.Comment: Data available at http://www.astro.rug.nl/~planet/planetpapers.html 20 pages, 10 figures. Minor changes. ApJ, accepte

    Tillage erosion as an important driver of in‐field biomass patterns in an intensively used hummocky landscape

    Get PDF
    Tillage erosion causes substantial soil redistribution that can exceed water erosion especially in hummocky landscapes under highly mechanized large field agriculture. Consequently, truncated soil profiles can be found on hill shoulders and top slopes, whereas colluvial material is accumulated at footslopes, in depressions, and along downslope field borders. We tested the hypothesis that soil erosion substantially affects in-field patterns of the enhanced vegetation index (EVI) of different crop types on landscape scale. The interrelation between the EVI (RAPIDEYE satellite data; 5 m spatial resolution) as a proxy for crop biomass and modeled total soil erosion (tillage and water erosion modeled using SPEROS-C) was analyzed for the Quillow catchment (size: 196 km2) in Northeast Germany in a wet versus normal year for four crop types (winter wheat, maize, winter rapeseed, winter barley). Our findings clearly indicate that eroded areas had the lowest EVI values, while the highest EVI values were found in depositional areas. The differences in the EVI between erosional and depositional sites are more pronounced in the analyzed normal year. The net effect of total erosion on the EVI compared to areas without pronounced erosion or deposition ranged from −10.2% for maize in the normal year to +3.7% for winter barley in the wet year. Tillage erosion has been identified as an important driver of soil degradation affecting in-field crop biomass patterns in a hummocky ground moraine landscape. While soil erosion estimates are to be made, more attention should be given toward tillage erosion.ISSN:1085-3278ISSN:1099-145
    corecore