176 research outputs found
Theory of Banana Liquid Crystal Phases and Phase Transitions
We study phases and phase transitions that can take place in the newly
discovered banana (bow-shaped or bent-core) liquid crystal molecules. We show
that to completely characterize phases exhibited by such bent-core molecules a
third-rank tensor order parameter is necessary in addition to the
vector and the nematic (second-rank) tensor order parameters. We present an
exhaustive list of possible liquid phases, characterizing them by their
space-symmetry group and order parameters, and catalog the universality classes
of the corresponding phase transitions that we expect to take place in such
bent-core molecular liquid crystals. In addition to the conventional
liquid-crystal phases such as the nematic phase, we predict the existence of
novel liquid phases, including the spontaneously chiral nematic
and chiral polar phases, the orientationally-ordered but
optically isotropic tetrahedratic phase, and a novel nematic phase
with symmetry that is neither uniaxial nor biaxial. Interestingly, the
Isotropic-Tetrahedratic transition is {\em continuous} in mean-field theory,
but is likely driven first-order by thermal fluctuations. We conclude with a
discussion of smectic analogs of these phases and their experimental
signatures.Comment: 28 pgs. RevTex, 32 eps figures, submitted to Phys. Rev.
Effective index of refraction, optical rotation, and circular dichroism in isotropic chiral liquid crystals
This paper concerns optical properties of the isotropic phase above the
isotropic-cholesteric transition and of the blue phase BP III. We introduce an
effective index, which describes spatial dispersion effects such as optical
rotation, circular dichroism, and the modification of the average index due to
the fluctuations. We derive the wavelength dependance of these spatial
dispersion effects quite generally without relying on an expansion in powers of
the chirality and without assuming that the pitch of the cholesteric is
much shorter than the wavelength of the light , an approximation which
has been made in previous studies of this problem. The theoretical predictions
are supported by comparing them with experimental spectra of the optical
activity in the BP III phase.Comment: 15 pages and 7 figures. Submitted to PR
Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962
- 968 (2003)] introduced in connection with the summation of the divergent
perturbation expansion of the hydrogen atom in an external magnetic field a new
sequence transformation which uses as input data not only the elements of a
sequence of partial sums, but also explicit estimates
for the truncation errors. The explicit
incorporation of the information contained in the truncation error estimates
makes this and related transformations potentially much more powerful than for
instance Pad\'{e} approximants. Special cases of the new transformation are
sequence transformations introduced by Levin [Int. J. Comput. Math. B
\textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189
- 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and
also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A
\textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations
- explicit expressions, recurrence formulas, explicit expressions in the case
of special remainder estimates, and asymptotic order estimates satisfied by
rational approximants to power series - is formulated in terms of hitherto
unknown mathematical properties of the new transformation introduced by
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable
formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of
Mathematical Physic
Structure and dynamics of reentrant nematics: Any open questions after almost 40 years?
Liquid crystals have attracted enormous interest because of the variety of
their phases and richness of their application. The interplay of general
physical symmetries and specific molecular features generates a myriad of
different phenomena. A surprising behavior of liquid crystals is the reentrancy
of phases as temperature, pressure, or concentration are varied. Here, we
review the main experimental facts and the different theoretical scenarios that
have guided the understanding of bulk reentrant nematics. Recently, some
computer simulations of a system confined to nanoscopic scales have found new
dynamical features of the reentrant nematic phase. We discuss this prediction
in relation with the available experimental evidence on reentrant nematics and
with the dynamics of liquids in strongly confined environments
QED Effective Action Revisited
The derivation of a convergent series representation for the quantum
electrodynamic effective action obtained by two of us (S.R.V. and D.R.L.) in
[Can. J. Phys. vol. 71, p. 389 (1993)] is reexamined. We present more details
of our original derivation. Moreover, we discuss the relation of the
electric-magnetic duality to the integral representation for the effective
action, and we consider the application of nonlinear convergence acceleration
techniques which permit the efficient and reliable numerical evaluation of the
quantum correction to the Maxwell Lagrangian.Comment: 20 pages, LaTeX, 1 table; minor additions and adjustments; to appear
in Can. J. Phy
- …