55 research outputs found

    Iridium Cyclooctene Complex Forms a Hyperpolarization Transfer Catalyst Before Converting to a Binuclear C-H Bond Activation Product Responsible for Hydrogen Isotope Exchange

    Get PDF
    [IrCl(COE)2]2 ( 1 ) reacts with pyridine and H2 to form crystallo-graphically characterized IrCl(H)2(COE)(py)2 ( 2 ). 2 undergoes pyridine loss to form 16-electron IrCl(H)2(COE)(py) (3) with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves the hyperpolarization of free pyridine (and nicotinamide, nicotine, 5-aminopyrimidine and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process. 2 reacts further over 48 hrs at 298 K to form crystallographically characterized (Cl)(H)(py)(μ-Cl)(μ-H)(κ-μ-NC5H4)Ir(H)(py)2 (4). This dimer is shown to be active in the hydrogen isotope exchange process that is used in radiophar-maceutical preparations. Furthermore, while [Ir(H)2(COE)(py)3]PF6 ( 6 ) forms on addition of AgPF6 to 2 , its stability precludes its efficient involvement in SABRE

    RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars

    Get PDF
    We use results of our 3 year polarimetric monitoring program to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by {\em RoboPol} is analysed together with the gamma-ray data provided by {\em Fermi}-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time scales of rotations and flares are marginally correlated.Comment: 12 pages, 16 figures, accepted to MNRA

    RoboPol: First season rotations of optical polarization plane in blazars

    Get PDF
    We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability 1.5×102\le 1.5 \times 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (5×105\sim 5 \times 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure

    RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    Get PDF
    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock

    RoboPol: connection between optical polarization plane rotations and gamma-ray flares in blazars

    Get PDF
    We use results of our 3 yr polarimetric monitoring programme to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by RoboPol is analysed together with the gamma-ray data provided by Fermi-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time-scales of rotations and flares are marginally correlated

    Optical polarization of gamma-ray bright blazars

    Get PDF
    We report about first results of the RoboPol project. RoboPol is a large-sample, high-cadence, polarimetric monitoring program of blazars in optical wavelengths, using a camera specifically constructed for this project, mounted at the University of Crete's Skinakas Observatory 1.3 m telescope. The analysis of RoboPol data is conducted in conjunction with Fermi LAT gamma-ray data, and multifrequency radio data from the OVRO (Caltech), F-GAMMA (MPIfR), and Torun (NCU) monitoring programs. Using carefully selected samples of gamma-ray bright and weak blazars we investigate a connection between their optical polarization behaviour and variability properties in gamma. We examine a relationship of gamma flares with polarization angle rotations relying on robust statistical criteria. We analyse also the optical polarization variability itself in order to establish some restrictions on physical models of blazars jets

    RoboPol: a four-channel optical imaging polarimeter

    Get PDF
    We present the design and performance of RoboPol, a four-channel optical polarimeter operating at the Skinakas Observatory in Crete, Greece. RoboPol is capable of measuring both relative linear Stokes parameters q and u (and the total intensity I) in one sky exposure. Though primarily used to measure the polarization of point sources in the R band, the instrument features additional filters (B, V, and I), enabling multiwavelength imaging polarimetry over a large field of view (13.6' x 13.6'). We demonstrate the accuracy and stability of the instrument throughout its 5 yr of operation. Best performance is achieved within the central region of the field of view and in the R band. For such measurements the systematic uncertainty is below 0.1 per cent in fractional linear polarization, p (0.05 per cent maximum likelihood). Throughout all observing seasons the instrumental polarization varies within 0.1 per cent in p and within similar to 1 degrees in polarization angle
    corecore